收藏 分销(赏)

二次函数中等腰三角形的存在性.doc

上传人:pc****0 文档编号:9437908 上传时间:2025-03-26 格式:DOC 页数:4 大小:183.50KB
下载 相关 举报
二次函数中等腰三角形的存在性.doc_第1页
第1页 / 共4页
二次函数中等腰三角形的存在性.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
知识回顾: 1、二次函数的三种形式: 2、已知一边,求等腰三角形周长的方法: 3、等腰三角形的特点: 例题分析: 例1、如图,抛物线经过的三个顶点,已知轴,点在轴上,点 在轴上,且.(1)求抛物线的对称轴;(2)求抛物线的解析式; A C B y x 0 1 1 (3)探究:若点是抛物线对称轴上且在轴下方的动点,是否存在是等腰三角形.若存在,求出所有符合条件的点坐标;不存在,请说明理由. 例2、已知:如图,抛物线经过、、三点.(1)求抛物线的函数关系式; (2)若过点C的直线与抛物线相交于点E (4,m ),请求出△CBE的面积S的值; (3)在抛物线上求一点使得△ABP0为等腰三角形,并写出点的坐标; x y C B A E –1 1 O (4)除(3)中所求的点外,在抛物线上是否还存在其它的点P使得△ABP为等腰三角形?若存在,请求出一共有几个满足条件的点(要求简要说明理由,但不证明);若不存在这样的点,请说明理由. 例3、已知:Rt△ABC的斜边长为5,斜边上的高为2,将这个直角三角形放置在平面直角坐标系中,其斜边AB与x轴重合(其中OA<OB),直角顶点C落在y轴正半轴上(如图1)。 (1)求线段OA、OB的长和经过点A、B、C的抛物线的关系式。 (2)如图2,点D的坐标为(2,0),点P(m,n)是该抛物线上的一个动点(其中m>0,n>0),连接DP交BC于点E。①当△BDE是等腰三角形时,直接写出此时点E的坐标。 ②又连接CD、CP(如图3),△CDP是否有最大面积?若有,求出△CDP的最大面积和此时点P的坐标;若没有,请说明理由。 图2 图1 图3 例4、如图9,抛物线与轴交于、两点(点在点的左侧),抛物线上另有一点在第一象限,满足∠为直角,且恰使△∽△.(1)求线段的长.: (2)求该抛物线的函数关系式.: (3)在轴上是否存在点,使△为等腰三角形?若存在, 求出所有符合条件的点的坐标;若不存在,请说明理由. 例5、在平面直角坐标系中,现将一块等腰直角三角板放在第二象限,斜靠在两坐标轴上,且点,点,如图所示:抛物线经过点. (1)求点的坐标; (2)求抛物线的解析式; (3)在抛物线上是否还存在点(点除外),使仍然是以为直角边的等腰直角三角形?若存在,求所有点的坐标;若不存在,请说明理由. B A C x y (0,2) (-1,0) 课堂练习: 1、如图11所示,在梯形ABCD中,已知AB∥CD, AD⊥DB,AD=DC=CB,AB=4.以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系. (1)求∠DAB的度数及A、D、C三点的坐标;(2)求过A、D、C三点的抛物线的解析式及其对称轴L. (3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由) 思考题:如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax2+bx过A、C两点. (1)直接写出点A的坐标,并求出抛物线的解析式; (2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD 向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE⊥AB交AC于点E ①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG最长? ②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形? 请直接写出相应的t值.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服