资源描述
中考数学真题汇编(特殊三角形)
一、选择题
1.(浙江省丽江市)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3上,且l1,l2之间的距离为2 , l2,l3之间的距离为3 ,则AC的长是( A )
A. B. C. D.7
l1
l2
l3
A
C
B
2.(2009白银市)如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为8,则BE=( C )
A.2 B.3 C. D.
3.(2009年烟台市)如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为( B )
A. B. C. D.
A
D
C
P
B
60°
4.(2009泰安)如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是( B )
(A)2 (B)3 (C) (D)4
5.(2009年温州)如图,△ABC中,AB=AC=6,BC=8,AE平分么BAC交BC于点E,点D为AB的中点,连结DE,则△BDE的周长是( B )
A.7+ B.10 C.4+2 D.12
6.(2009年温州)一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是(C )
A.第4张 B.第5张 C.第6张 D.第7张
7.(2009呼和浩特)在等腰中,,一边上的中线将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( C )
A.7 B.11 C.7或11 D.7或10
8.(2010 黄冈)如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为( )
A. B. C. D.不能确定
9.(2010湖北武汉)如图,△ABC内有一点D,且DA=DB=DC,若∠DAB=20°,∠DAC=30°,则∠BDC的大小是( )
A.100° B.80°
C.70° D.50°
10.(2010 湖南株洲)如图所示的正方形网格中,网格线的交点称为格点.已知、是两格点,如果也是图中的格点,且使得为等腰三角形,则点的个数是()
A.6 B.7 C.8 D.9
第8题图
11.(2010 山东东营)如图,点C是线段AB上的一个动点,△ACD和△BCE是在AB同侧的两个等边三角形,DM,EN分别是△ACD和△BCE的高,点C在线段AB上沿着从点A向点B的方向移动(不与点A,B重合),连接DE,得到四边形DMNE.这个四边形的面积变化情况为( )
(A)逐渐增大 (B) 逐渐减小 (C) 始终不变 (D) 先增大后变小
12.(2010黑龙江绥化)如图所示,已知△ABC和△DCE均是等边三角形,点B、C、E在同一条直线上,AE与BD交于点O,AE与CD交于点G,AC与BD交于点F,连结OC、FG,则下列结论:①AE=BD ②AG=BF ③FG∥BE ④∠BOC=∠EOC,其中正确结论的个数( D )
A.1个 B.2个 C.3个 D.4个
13、 (2011内蒙古赤峰,8,3分)如图,在△ABC中,AB=20㎝,AC=12㎝,点P从点B出发以每秒3㎝的速度向点A运动,点Q从点A同时出发以每秒2㎝的速度向点C运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ是等腰三角形时,运动的时间是( D )
A. 2.5 B.3秒 C.3.5秒 D.4秒
二、填空题
1.(2009年泸州)如图1,在边长为1的等边△ABC中,中线AD与中线BE相交于点O,则OA长度为 .
2.(2009年泸州)如图2,已知Rt△ABC中,AC=3,BC= 4,过直角顶点C作
CA1⊥AB,垂足为A1,再过A1作A1C1⊥BC,垂足为C1,过C1作C1A2⊥AB,
垂足为A2,再过A2作A2C2⊥BC,垂足为C2,…,这样一直做下去,得到了一组
线段CA1,A1C1,,…,则CA1= ,
3.(2009年安顺)图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的。在Rt△ABC中,若直角边AC=6,BC=6,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长(图乙中的实线)是______________。
4. (2009襄樊市)在中,为的中点,动点从点出发,以每秒1的速度沿的方向运动.设运动时间为,那么当 秒时,过、两点的直线将的周长分成两个部分,使其中一部分是另一部分的2倍.
5. (2009年宜宾)已知:如图,以Rt△ABC的三边为斜边分别向外作等腰直角三角形.若斜边AB=3,则图中阴影部分的面积为 .
C
A
B
S1
S2
6.(2009年湖州)如图,已知在中,,,分别以,为直径作半圆,面积分别记为,,则+的值等于 2π .
7.(2009年云南省)如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线AD交BC于点D,DE∥AC,DE交AB于点E ,M为BE的中点,连结DM. 在不添加任何辅助线和字母的情况下,图中的等腰三角形是 .(写出一个即可)
B D C
E
M
A
F
E
B
C
D
A
8.(2009辽宁朝阳)如图,是等边三角形,点是边上任意一点, 于点,于点.若,则_____________.
9.(2010浙江绍兴)做如下操作:在等腰三角形ABC中,AB= AC,AD平分∠BAC,
交BC于点D.将△ABD作关于直线AD的轴对称变换,所得的
像与△ACD重合.
对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线、底边上的中线
和高互相重合.
由上述操作可得出的是 2、3 (将正确结论的序号都填上).
10.(2010四川眉山)如图,将第一个图(图①)所示的正三角形连结各边中点进行分割,得到第二个图(图②);再将第二个图中最中间的小正三角形按同样的方式进行分割,得到第三个图(图③);再将第三个图中最中间的小正三角形按同样的方式进行分割,……,则得到的第五个图中,共有__17______个正三角形.
……
11.(2010四川内江)下面的方格图案中的正方形顶点叫做格点,图1中以格点为顶点的等腰直角三角形有4个,图2中以格点为顶点的等腰直角三角形有 10 个,图3中以格点为顶点的等腰直角三角形有 28 个,图4中以格点为顶点的等腰直角三角形有 50 个.
图2
图1
图4
图3
12. (2011浙江台州,14,5分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,
EBˊ分别交边AC于点F,G,若∠ADF=80º ,则∠EGC的度数为 80
13. (2011贵州贵阳,15,4分)如图,已知等腰Rt△ABC的直角边长为1,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推直到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为______.
三、简答题
1.(2009年义乌)如图,在边长为4的正三角形ABC中,ADBC于点D,以AD为一边向右作正三角形ADE。
(1)求△ABC的面积S;
(2)判断AC、DE的位置关系,并给出证明。
2. (2011江苏扬州,23,10分)已知:如图,锐角△ABC的两条高BD、CE相交于点O,且OB=OC,
(1)求证:△ABC是等腰三角形;
(2)判断点O是否在∠BAC的角平分线上,说明理由。
3. (2011山东日照,23,10分)如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.
(1)求证:DE平分∠BDC;
(2)若点M在DE上,且DC=DM,求证:AM=DE。
4.(2010四川内江)如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,AE交DC于F,BD分别交CE,AE于点G、H.试猜测线段AE和BD的位置和数量关系,并说明理由.
F
G
H
5. (2011湖北鄂州,18,7分)如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,求EF长.
第18题图
B
A
E
D
F
C
6. (2011浙江绍兴,23,12分)数学课上,李老师出示了如下框中的题目.
小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论
当点为的中点时,如图1,确定线段与的大小关系,请你直接写出结论:
(填“>”,“<”或“=”).
第25题图2
第25题图1
(2)特例启发,解答题目
解:题目中,与的大小关系是: (填“>”,“<”或“=”).理由如下:如图2,过点作,交于点.
(请你完成以下解答过程)
(3)拓展结论,设计新题
在等边三角形中,点在直线上,点在直线上,且.若的边长为1,,求的长(请你直接写出结果).
7. (2011四川达州,20,6分) 如图,△ABC的边BC在直线上,AC⊥BC,且AC=BC,△DEF的边FE也在直线上,边DF与边AC重合,且DF=EF.
(1)在图(1)中,请你通过观察、思考,猜想并写出AB与AE所满足的数量关系和位置关系;(不要求证明)
(2)将△DEF沿直线向左平移到图(2)的位置时,DE交AC于点G,连结AE,BG.猜想△BCG与△ACE能否通过旋转重合?请证明你的猜想.
8.(2010辽宁丹东市)如图, 已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时, △DMN也随之整体移动) .
(1)如图①,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;
(2)如图②,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图②证明;若不成立,请说明理由;
(3)若点M在点C右侧时,请你在图③中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立?请直接写出结论,不必证明或说明理由.
图①
图②
图③
第25题图
A
·
B
C
D
E
F
·
·
·
8
展开阅读全文