收藏 分销(赏)

matlab实验五.doc

上传人:xrp****65 文档编号:9433115 上传时间:2025-03-26 格式:DOC 页数:20 大小:881KB 下载积分:10 金币
下载 相关 举报
matlab实验五.doc_第1页
第1页 / 共20页
matlab实验五.doc_第2页
第2页 / 共20页


点击查看更多>>
资源描述
实验五 曲面绘图 【实验目的】 1. 了解二元函数图形的制作。 2. 空间曲面等高线的制作。 3. 学习掌握MATLAB软件有关的命令。 【实验内容】 画出函数的图形,并画出其等高线。 【实验准备】 1.曲线绘图的MATLAB命令 MATLAB中主要用mesh,surf命令绘制二元函数图形。 mesh(x,y,z) 画网格曲面,这里x,y,z是三个数据矩阵,分别表示数据点的横坐标,纵坐标和函数值,该命令将数据点在空间中描出,并连成网格。 surf(x,y,z) 画完整曲面,这里x,y,z是三个数据矩阵,分别表示数据点的横坐标,纵坐标和函数值,该命令将数据点所表示曲面画出。 可以用help mesh, help surf查阅有关这些命令的详细信息 【实验方法与步骤】 练习1 画出函数的图形,不妨将区域限制在。用MATLAB作图的程序代码为: >>clear; >>x=-3:0.1:3; %x的范围为[-3,3] >>y=-3:0.1:3; %y的范围为[-3,3] >>[X,Y]=meshgrid(x,y); %将向量x,y指定的区域转化为矩阵X,Y >>Z=sqrt(X.^2+Y.^2); %产生函数值Z >>mesh(X,Y,Z) 结果如图5.1。图5.1是网格线图,如果要画完整的曲面图,只需将上述的MATLAB代码mesh(X,Y,Z)改为surf(X,Y,Z), 结果如图5.2 图5.1 锥面 图5.2 锥面 要画等高线,需用contour,contour3命令.其中contour为二维等高线, contour3为三维等高线,如画图5.1的三维等高线, MATLAB代码为: >>clear; >>x=-3:0.1:3; >>y=-3:0.1:3; >>[X,Y]=meshgrid(x,y); >>Z=sqrt(X.^2+Y.^2); >>contour3(X,Y,Z,10) %画10条等高线 >>xlabel('X-axis'),ylabel('Y-axis'),zlabel('Z-axis') %三个坐标轴的标记 >>title('Contour3 of Surface') %标题 >>grid on %画网格线 结果如图5.3. 图5.3 等高线 如画图5.1的二维等高线, MATLAB代码为: >>clear; x=-3:0.1:3; y=-3:0.1:3; >>[X,Y]=meshgrid(x,y); Z=sqrt(X.^2+Y.^2); >> contour(X,Y,Z,10) >>xlabel('X-axis'),ylabel('Y-axis') >>title('Contour of Surface') >>grid on 结果如图5.4. 图5.4 等高线 如果要画的等高线,则用命令 >>clear; x=-3:0.1:3; y=-3:0.1:3; >>[X,Y]=meshgrid(x,y); Z=sqrt(X.^2+Y.^2); >> contour(X,Y,Z,[1 1]) 结果如图5.5。 图5.5 等高线 练习1中,函数值可简单算出。在有些情况下,函数值不能简单算出。这是因为x和y的值可能是非均匀间隔的甚至是随机分布的,也可能使用了不同的坐标系,比如非长方形的网。出现这些情况时,MATLAB中的函数griddata就用来产生经查值后的均匀间隔数据以作图。 练习2 二次曲面的方程如下 讨论参数对其形状的影响。 本练习的关键在于如何作出三维曲面图形,特别注意在给定值求时,若有开方运算,一是会出现虚数,二是对实数也有正负两个解。为了使虚数不出现在绘图中,采用了一种技巧,就是将虚数都换成非数(NaN). MATLAB代码为: >>a=input('a='); b=input('b='); c=input('c='); >>d=input('d='); N=input('N='); %输入参数,N为网格线数目 >>xgrid=linspace(-abs(a), abs(a),N); %建立x网格坐标 >>ygrid=linspace(-abs(b), abs(b),N); %建立y网格坐标 >>[x,y]=meshgrid(xgrid,ygrid); %确定个点的x,y网格坐标 >>z=c*sqrt(d-y.*y/b^2-x.*x/a^2); u=1; %u=1,表示z要取正值 >>z1=real(z); %取z的实部z1 >>for k=2:N-1 %以下7行程序的作用是取消z中含虚数的点 >>for j=2:N-1 if imag(z(k,j))~=0 z1(k,j)=0; end if all(imag(z([k-1:k+1],[j-1:j+1])))~=0 za(k,j)=NaN; end end end >>surf(x,y,z1), hold on %画空间曲面 >>if u==1 z2=-z1; surf(x,y,z2); %u=1时加画负半面 axis([-abs(a),abs(a), -abs(b), abs(b), -abs(c), abs(c)]); end >>xlabel('x'),ylabel('y'),zlabel('z') >>hold off 运行程序,当时的结果见图5.6, 当时的结果见图5.7, 当时的结果见图5.8, 图5.6 椭球面 图5.7 双曲面 图5.8 椭球双曲面 练习3 列出求空间两任意曲面的交线的程序。 两空间曲面方程连立起来,就形成一个空间曲线的方程。这个曲线能满足两个曲面的方程,因而也就是这两个空间曲面的交线。显示这两个曲面并不难,用两次mesh语句即可,但要显示其交线,必须先找到各个交点,因为数值计算得到的是离散点,难以找到两个曲面上完全重合的点,本程序采用了设置限的方法,只要在同一网格点处,两曲面的z之之差小于设定限,就认为它是交点,限值设定几次要才能定的好。 下面MATLAB程序给出两个空间曲面的交线(当然是空间曲线),给出不同的z1,z2方程可绘出不同的空间曲线和其交线。 >>[x,y]=meshgrid(-2:0.1:2,-2:0.1:2); %设定计算和绘图的定义域网格 >>z1=x.^2-2*y.^2; %第一个曲面方程 >>z2=2*x-3*y; %第二个曲面方程 >>mesh(x,y,z1); hold; mesh(x,y,z2); %再一个图上同时画出两个曲面 >>r0=(abs(z1-z2)<=0.1); %求两曲面z坐标差小于0.1的网格矩阵 >>zz=r0.*z1; yy=r0.*y; xx=r0.*x; %求这些网格上的坐标值,即交线坐标 >>plot3(xx(r0~=0),yy(r0~=0),yy(r0~=0),'*'); %画出这些点 >>colormap(gray), hold off %不用彩色而用灰度表示曲面 执行此程序得出的曲面见图5.9. 图5.9 两曲面的交线 如果想改表曲面方程,可以在程序中改动第二行和第三行。但这样的程序还不是通用的,最好程序运行时能向用户提问,允许用户输入曲面方程。此时就要用到字符串功能和eval命令。 s1=input(‘输入第一个方程’,’s’); 在原来的z1方程语句处改为z1=eval(s1);类似地输入第二个方程。此外,应使用户能给出定义域和间隔。这实现起来比较简单,只要把第一句改为 [x,y]=meshgrid(xmin:dx:xmax,ymin:dy:ymax); 其中,xmin,dx,xmax,ymin,dy,ymax可由程序给出屏幕提问,让用户用键盘输入。当然,这样又增加了运行时的麻烦,所以编程时要找一个折衷的选择,要有一定的灵活性又不能太麻烦,应恰到好处。 练习4 用平行界面法讨论由方程构成的马鞍面形状。 我们只需对练习3种的程序作如下修改: 定义域网格改为[x,y]=meshgrid(-10:0.2:10, -10:0.2:10); 第一个曲面方程改为z1=(x.^2-2*y.^2)+eps; 第二个曲面(平面)方程改为与z轴正交的水平面,z2=a; 为了画z2的曲面图,应使得z2与x,y有同样的维数,故写为z2=a*ones(size(x)); a可由用户输入,另外用subplot把曲面和交线分别画在两张图上,并注意把两个分图取成同样比例,便于比较.因为z的范围增大,必须把两曲面交点处z1和z2的容差放大到1. >>[x,y]=meshgrid(-10:0.2:10, -10:0.2:10); %设定计算和绘图的定义域网格 >>z1=(x.^2-2*y.^2)+eps; %第一个曲面方程 >>a=input('a=(-50<a<50)'); z2=a*ones(size(x)); %第二个曲面方程(平面) >>subplot(1,2,1),mesh(x,y,z1);hold on;mesh(x,y,z2); %分别划出两个曲面 >>v=[-10,10,-10,10,-100,100]; axis(v), grid %确定第一个分图的坐标系 >>colormap(gray), hold off, %取消彩色,改为灰度 >>r0=abs(z1-z2)<=1; %求两曲面z坐标差小于1的网格 >>zz=r0.*z2; yy=r0.*y; xx=r0.*x; %求这些网格上的坐标值,即交线坐标 >>subplot(1,2,2),plot3(xx(r0~=0),yy(r0~=0),zz(r0~=0),'x');%画出交线 >>axis(v), grid %使得第二个分图取第一个分图的坐标系 执行此程序,并输入a=8,得到的三维图形及交线见图5.10, 当a=-20,得到的三维图形及交线见图5.11,可见从上而下,其横切面交线发生了很大的变化. 图5.10 马鞍面的水平截面(a=8) 图5.11 马鞍面的水平截面(a=-20) 练习5 已经知道曲面上一些点的数据(2,2,80), (3,2,82), (4,2,84), (0,3,79), (2,3,61), (3,3,65), (0,4,84), (1,4,84), (4,4,86), 将这些数据用二元函数插值的方法画出完整的曲面。 首先看这些原始数据的柄图,相应的MATLAB程序代码为: >>clear; >>x=[2,3,4,0,2,3,0,1,4]; >>y=[2,2,2,3,3,3,4,4,4]; >>z=[80,82,84,79,61,65,84,84,86]; >>stem3(x,y,z); %画火柴杆图命令 >>title('Raw data'); >>xlabel('x'),ylabel('y'),zlabel('z') 结果如图5.12. 图5.12 柄图 显然上面数据是残缺不全的,下面用插值的方法画出完整的曲面,相应的MATLAB程序代码为: >>xi=0:0.2:3; yi=2:0.2:4; %选定x,y的范围 >>[X,Y]=meshgrid(xi,yi); %产生网格向量X,Y >>Z=griddata(x,y,z,X,Y,'cubic'); %’cubic’采用三角形三次插值 >>mesh(X,Y,Z); title('Griddata'); >>xlabel('x'),ylabel('y'),zlabel('z') 结果如图5.13. 图5.13 插值曲面 练习6 (海底测量)表5-1给出水面直角坐标(x,y)处水深z,这时在低潮时测得的。如果船的吃水深度为5米,试问在矩形域中船应避免进入那些区域? 表5-1 水深数据 x(m) y(m) z(m) 129 7 4 140 141 8 108 28 6 88 147 8 185 22 6 195 137 8 105 85 8 x(m) y(m) z(m) 157 -6 9 107 -81 9 77 3 8 145 45 8 162 -66 9 162 84 4 117 -38 9 我们首先看测量点的位置: >>clear; close; >>x=[129 140 108 88 185 195 105 157 107 77 145 162 162 117]; >>y=[7 141 28 147 22 137 85 -6 -81 3 45 -66 84 -38]; >>plot(x,y,'o'); 结果如图5.8. 图5.14 测量点的位置 由图5.8可见,这是一批不规则数据。由于没有先验函数,我们使用插值法。为了使结果更直观,考虑将z的数据转化为相对于海面的高度。相应的MATLAB程序代码为: >>z=[4 8 6 8 6 8 8 9 9 8 8 9 4 9]; >>h=-z; %数据转化为相对于海面的高度 >>xi=75:5:200; yi=-50:10:150; >>[X,Y]=meshgrid(xi,yi); >>H=griddata(x,y,h,X,Y,'cubic'); >>mesh(X,Y,H); >>view(-60,30); %改变视点 结果如图5.15 图5.15 海底地形图 由图5.15可见,在(129,7.5)和(162,84)附近各有一块暗礁。进一步,求水深不到5米的两个危险区域: >>contour(X,Y,H, [-5,-5],'k') %’k’表示等高线的颜色为黑色 图5.16 两个危险区域 【练习与思考】 1. 画出空间曲线在范围内的图形,并画出相应的等高线。 >>[x,y]=meshgrid(-30:0.1:30); >>z=10*sin(sqrt(x.^2+y.^2))./sqrt(1+x.^2+y.^2); >>meshc(x,y,z) 2. 根据给定的参数方程,绘制下列曲面的图形。 (1) 椭球面 >> [x,y,z]=ellipsoid(0,0,0,3,2,1,100); >> mesh(x,y,z) >>axis equal (2) 椭圆抛物面 >> syms u v >> ezmesh(3*u*sin(v),2*u*cos(v),4*u^2) (3) 单叶双曲面 >> [t,z]=meshgrid(-2*pi:pi/10:2*pi,-10:.5:10); >> x=3*sqrt((z/4).^2+1)*sin(t); >> y=2*sqrt((z/4).^2+1)*cos(t); >> mesh(x,y,z) (4) 双曲抛物面 >> [x,y]=meshgrid(-10:0.1:10); >> z=(x.^2-y.^2)/3; >> mesh(x,y,z) (5) 旋转面 >>[t,z]=meshgrid(-2*pi:0.1:2*pi,0.1:0.1:10); >>x=log(z).*sin(t); >> y=log(z).*cos(t); >> mesh(x,y,z) (6) 圆锥面 >> [z,t]=meshgrid(-10:0.1:10,-2*pi:0.1:pi); >> x=z.*sin(t); >> y=z.*cos(t); >> mesh(x,y,z) (7) 环面 >> syms u v >> x=(3+0.4*cos(u))*sin(v); >> y=(3+0.4*cos(u))*cos(v); >> z=sin(u)*3; >> z=0.4*sin(u); >> ezmesh(x,y,z) (8) 正螺面 >> syms u v >> x=u*sin(v); >> y=u*cos(v); >> z=4*u; >> ezmesh(x,y,z) 3. 在一丘陵地带测量搞程,x和y方向每隔100米册一个点,,得搞程见表5-2,试拟合一曲面,确定合适的模型,并由此找出最高点和该点的高程. 表5-2 高程数据 y x 100 200 300 400 100 200 300 400 636 698 680 662 697 712 674 626 624 630 598 552 478 478 412 334 >>[x,y]meshgrid(100:100:400); >> z=[636 698 680 662;697 712 674 626;624 630 598 552;478 478 412 334]; >> mesh(x,y,z) >>hidden off 20
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服