1、第一章 晶体结构1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。 解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。2.晶格点阵与实际晶体有何区别和联系? 解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。当晶格点
2、阵中的格点被具体的基元代替后才形成实际的晶体结构。晶格点阵与实际晶体结构的关系可总结为:晶格点阵基元实际晶体结构3.晶体结构可分为Bravais格子和复式格子吗? 解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。4.图1.34所示的点阵是布喇菲点阵(格子)吗?为什么?如果是,指明它属于那类布喇菲格子?如果不是,请说明这种复式格子的布喇菲格子属哪
3、类?(a) (b) (c) (d)图1.34(a)“面心体心”立方;(b)“边心”立方;(c)“边心体心”立方;(d)面心四方解:(a)“面心体心”立方不是布喇菲格子。从“面心体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。(b)“边心”立方不是布喇菲格子。从“边心”立方体竖直边心任一点来看,与它最邻近的点子有八个;从“边心”立方体水平边心任一点
4、来看,与它最邻近的点子也有八个。虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。竖直边心点的最邻近的点子处于相互平行、横放的两个平面上,而水平边心点的最邻近的点子处于相互平行、竖放的两个平面上,显然这两种点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。(c)“边心+体心”立方不是布喇菲格子。从“边心+体心”立方任一顶点来看,与它最邻近的点子有6个;从边心任一点来看,与它最邻近的点子有2个;从体心点来看,与它最邻近的点子有12个。显然这三种点所处的几何环境不同,因而也不是布喇菲格子,而是属于复式格子,此复式格子
5、属于简立方布喇菲格子。(d)“面心四方”从“面心四方”任一顶点来看,与它最邻近的点子有4个,次最邻近点子有8个;从“面心四方”任一面心点来看,与它最邻近的点子有4个,次最邻近点子有8个,并且在空间的排列位置与顶点的相同,即所有格点完全等价,因此“面心四方”格子是布喇菲格子,它属于体心四方布喇菲格子。5.以二维有心长方晶格为例,画出固体物理学原胞、结晶学原胞,并说出它们各自的特点。解:以下给出了了二维有心长方晶格示意图:由上图,我们可给出其固体物理学原胞如下图(a)所示,结晶学原胞如下图(b)所示: (a) (b)从上图(a)和(b)可以看出,在固体物理学原胞中,只能在顶点上存在结点,而在结晶学
6、原胞中,既可在顶点上存在结点,也可在面心位置上存在结点。6.倒格子的实际意义是什么?一种晶体的正格矢和相应的倒格矢是否有一一对应的关系?解:倒格子的实际意义是由倒格子组成的空间实际上是状态空间(波矢K空间),在晶体的X射线衍射照片上的斑点实际上就是倒格子所对应的点子。设一种晶体的正格基矢为、,根据倒格子基矢的定义:式中是晶格原胞的体积,即,由此可以唯一地确定相应的倒格子空间。同样,反过来由倒格矢也可唯一地确定正格矢。所以一种晶体的正格矢和相应的倒格矢有一一对应的关系。7.为什么说晶面指数()和Miller指数()都能反映一个平行晶面族的方向?解:晶面指数()是以固体物理学原胞的基矢、为坐标轴来
7、表示面指数的,而Miller指数()是以结晶学原胞的基矢、为坐标轴来表示面指数的,但它们都是以平行晶面族在坐标轴上的截距的倒数来表示的,而这三个截距的倒数之比就等于晶面族的法线与三个基矢的夹角余弦之比,从而反映了一个平行晶面族的方向。8.试画出体心立方、面心立方的(100),(110)和(111)面上的格点分布。解:体心立方(100),(110)和(111)面上的格点分布为: 体心立方(100)面 体心立方(110)面 体心立方(111)面面心立方(100),(110)和(111)面上的格点分布为: 面心立方(100)面 面心立方(110)面 面心立方(111)面9.一个物体或体系的对称性高低
8、如何判断?有何物理意义?一个正八面体(见图1.35)有哪些对称操作?解:对于一个物体或体系,我们首先必须对其经过测角和投影以后,才可对它的对称规律,进行分析研究。如果一个物体或体系含有的对称操作元素越多,则其对称性越高;反之,含有的对称操作元素越少,则其对称性越低。晶体的许多宏观物理性质都与物体的对称性有关,例如六角对称的晶体有双折射现象。而立方晶体,从光学性质来讲,是各向同性的。正八面体中有3个4度轴,其中任意2个位于同一个面内,而另一个则垂直于这个面;6个2度轴;6个与2度轴垂直的对称面;3个与4度轴垂直的对称面及一个对称中心。10.各类晶体的配位数(最近邻原子数)是多少?解:7种典型的晶
9、体结构的配位数如下表1.1所示:晶体结构配位数晶体结构配位数面心立方六角密积12氯化钠型结构6体心立方8氯化铯型结构8简立方6金刚石型结构411.利用刚球密堆模型,求证球可能占据的最大体积与总体积之比为(1)简单立方;(2)体心立方;(3)面心立方(4)六角密积;(5)金刚石。解:(1)在简立方的结晶学原胞中,设原子半径为,则原胞的晶体学常数,则简立方的致密度(即球可能占据的最大体积与总体积之比)为:(2)在体心立方的结晶学原胞中,设原子半径为,则原胞的晶体学常数,则体心立方的致密度为:(3)在面心立方的结晶学原胞中,设原子半径为,则原胞的晶体学常数,则面心立方的致密度为:(4)在六角密积的结
10、晶学原胞中,设原子半径为,则原胞的晶体学常数,则六角密积的致密度为:(5)在金刚石的结晶学原胞中,设原子半径为,则原胞的晶体学常数,则金刚石的致密度为:12.试证明体心立方格子和面心立方格子互为正倒格子。解:我们知体心立方格子的基矢为:根据倒格子基矢的定义,我们很容易可求出体心立方格子的倒格子基矢为:由此可知,体心立方格子的倒格子为一面心立方格子。同理可得出面心立方格子的倒格子为一体心立方格子,所以体心立方格子和面心立方格子互为正倒格子。13. 对于六角密积结构,固体物理学原胞基矢为 试求倒格子基矢。 解:根据倒格子基矢的定义可知: =14. 一晶体原胞基矢大小,基矢间夹角,。试求:(1) 倒
11、格子基矢的大小;(2) 正、倒格子原胞的体积;(3) 正格子(210)晶面族的面间距。 解:(1) 由题意可知,该晶体的原胞基矢为:由此可知: = = = 所以 (2) 正格子原胞的体积为:倒格子原胞的体积为:(3)根据倒格子矢量与正格子晶面族的关系可知,正格子(210)晶面族的面间距为:= =15.如图1.36所示,试求:(1) 晶列,和的晶列指数;(2) 晶面,和的密勒指数;(3) 画出晶面(120),(131)。图1.36解:(1)根据晶列指数的定义易求得晶列的晶列指数为111,晶列的晶列指数为110,晶列的晶列指数为011。(2)根据晶面密勒指数的定义晶面在,和三个坐标轴上的截距依次为
12、1,-1和1,则其倒数之比为,故该晶面的密勒指数为(111)。晶面在,和三个坐标轴上的截距依次为1/2,和1,则其倒数之比为,故该晶面的密勒指数为(201)。晶面在,和三个坐标轴上的截距依次为1/2,-1和,则其倒数之比为,故该晶面的密勒指数为(210)。(3)晶面(120),(131)分别如下图中晶面和晶面所示:16.矢量,构成简单正交系。证明晶面族的面间距为解:由题意可知该简单正交系的物理学原胞的基矢为:由此可求得其倒格子基矢为:根据倒格子矢量的性质有: 17.设有一简单格子,它的基矢分别为,。试求:(1) 此晶体属于什么晶系,属于哪种类型的布喇菲格子?(2) 该晶体的倒格子基矢;(3)
13、密勒指数为(121)晶面族的面间距;(4) 原子最密集的晶面族的密勒指数是多少?(5) 111与111晶列之间的夹角余弦为多少?解:(1)由题意易知该晶体属于立方晶系,并属于体心立方布喇菲格子。(2)由倒格子基矢的定义可知:(3)根据倒格矢的性质,可求得密勒指数为(121)晶面族的面间距为 (4)由于面密度,其中是面间距,是体密度。对布喇菲格子,等于常数。因此,我们可设原子最密集的晶面族的密勒指数为,则该晶面族的面间距应为最大值,所以有 由此可知,对面指数为(100)、(010)、(101)、(011)和(111)有最大面间距,因而这些面即为原子排列最紧密的晶面族。(5)111与111晶列之间
14、的夹角余弦为 18.已知半导体GaAs具有闪锌矿结构,Ga和As两原子的最近距离d2.4510-10m。试求:(1) 晶格常数;(2) 固体物理学原胞基矢和倒格子基矢;(3) 密勒指数为(110)晶面族的面间距;(4) 密勒指数为(110)和(111)晶面法向方向间的夹角。解:(1)由题意可知,GaAs的晶格为复式面心立方晶格,其原胞包含一个Ga原子和一个As原子,其中Ga原子处于面心立方位置上,而As原子则处于立方单元体对角线上距离Ga原子1/4体对角线长的位置上,如左图所示:由此可知:故 = (2)由于GaAs的空间点阵为面心立方结构,故其固体物理学原胞基矢为:其倒格子基矢为: (3)密勒
15、指数为(110)晶面族的面间距为:(4)根据倒格子矢的性质可知,密勒指数为(110)和(111)晶面法向方向间的夹角即为倒格子矢和之间的夹角,设为,则有: 19. 如图1.37所示,设二维正三角形晶格相邻原子间距为a,试求:(1) 正格子基矢和倒格子基矢;(2) 画出第一布里渊区,并求出第一布里渊区的内接圆半径。解:(1)取该二维正三角形晶格中任意相邻的两边为基矢,并使的方向和的方向相同,于是有:那么有:图1.37(2)根据第一布里渊区的定义,可作图如下所示:上图中的阴影部分即为第一布里渊区,且由图中可以求出第一布里渊区的内接圆半径为:20.试求面心立方结构、体心立方结构和金刚石结构的几何结构
16、因子;并讨论其衍射相消条件。解:(1)在面心立方结构的原胞中包含有4个原子,其坐标为,由此可知,其几何结构因子为 由于、和都为整数,所以上式中的正弦项为0。于是有 由此可知,当、和奇偶混杂时,即、和不同为奇数或偶数时,此时,即出现衍射相消。(2)在体心立方结构的原胞中包含有2个原子,其坐标为和由此可知,其几何结构因子为 由于、和都为整数,所以上式中的正弦项为0。于是有由此可知,当为奇数时,此时有,即出现衍射相消。(3)在金刚石结构的原胞中含有8个原子,其坐标为,由此可知,其几何结构因子为 由于、和都为整数,所以上式中的正弦项为0。于是有由此可知,当、和奇偶混杂时,即、和不同为奇数或偶数时或者当
17、和全为偶数,且(其中为整数)时,有有,即出现衍射相消。21.用钯靶X射线投射到NaCl晶体上,测得其一级反射的掠射角为5.9,已知NaCl晶胞中Na与Cl的距离为2.8210-10m,晶体密度为2.16g/cm3。求:X射线的波长;阿伏加德罗常数。解:(1)由题意可知NaCl晶胞的晶胞参数m,又应为NaCl晶胞为面心立方结构,根据面心立方结构的消光规律可知,其一级反射所对应的晶面族的面指数为(111),而又易求得此晶面族的面间距为m又根据布拉格定律可知:m(2)由题意有以下式子成立 13第二章 晶体的结合1.试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。解:(1)离子键:无方向性,
18、键能相当强;(2)共价键:饱和性和方向性,其键能也非常强;(3)金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时偶极距或固有偶极距而形成,其结合力一般与成反比函数关系,该键结合能较弱;(5)氢键:依靠氢原子与2个电负性较大而原子半径较小的原子(如O,F,N等)相结合形成的。该键也既有方向性,也有饱和性,并且是一种较弱的键,其结合能约为50kJ/mol。2.有人说“晶体的内能就是晶体的结合能”,对吗?解:这句话不对,晶体的结合能是指当晶体处于稳定状态时的总能量(动能和势能)与组成这晶体的N个原
19、子在自由时的总能量之差,即。(其中为结合能,为组成这晶体的N个原子在自由时的总能量,为晶体的总能量)。而晶体的内能是指晶体处于某一状态时(不一定是稳定平衡状态)的,其所有组成粒子的动能和势能的总和。3.当2个原子由相距很远而逐渐接近时,二原子间的力与势能是如何逐渐变化的?解:当2个原子由相距很远而逐渐接近时,2个原子间引力和斥力都开始增大,但首先引力大于斥力,总的作用为引力,而相互作用势能逐渐减小;当2个原子慢慢接近到平衡距离时,此时,引力等于斥力,总的作用为零,而相互作用势能达到最小值;当2个原子间距离继续减小时,由于斥力急剧增大,此时,斥力开始大于引力,总的作用为斥力,而相互作用势能也开始
20、急剧增大。4.为什么金属比离子晶体、共价晶体易于进行机械加工并且导电、导热性良好?解:由于金属晶体中的价电子不像离子晶体、共价晶体那样定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”,因而金属晶体的延展性、导电性和导热性都较好。5.有一晶体,在平衡时的体积为,原子之间总的相互作用能为,如果原子间相互作用能由下式给出:,试证明弹性模量可由给出。解:根据弹性模量的定义可知 (1)上式中利用了的关系式。设系统包含个原子,则系统的内能可以写成 (2)又因为可把个原子组成的晶体的体积表示成最近邻原子间距的函数,即 (3)上式中为与晶体结构有关的因子(如面心立方结构,)。又
21、因为 (4) (5)考虑平衡条件,得,那么(5)式可化为 (6)将(6)式代入(1)式得:6.上题表示的相互作用能公式中,若,且两原子构成稳定分子时间距为m,离解能为4eV,试计算和之值。解:在平衡位置时有 (1) (2)将离解能eV和m代入(1)和(2)式可得:eVm2,eVm10。7. 设某晶体每对原子的势能具的形式,平衡时,结合能为,试计算A和B以及晶体的有效弹性模量。解:由题意有以下方程成立:把,的具体数值代入上述方程组,即得:由此可得:, 该晶体的有效弹性模量为:又(上式中表示晶体中所含的原子个数,表示与晶体结构有关的因子)故 8.KCl晶体的体弹性模量为1.741010Pa,若要使
22、晶体中相邻离子间距缩小0.5%,问需要施加多大的力。解:设KCl晶体内包含个原胞,综合考虑到库仑吸引能和重叠排斥能,则系统的内能可以写成 (1)此外,由于KCl每个原胞体积为,则晶体的总体积为 (2)其中(1)和(2)式中的都指KCl晶体中相邻K和Cl之间的距离。根据体弹性模量的定义有: (3)设平衡时晶体内相邻离子间的距离为,则平衡体积,那么平衡时的体弹性模量为。又根据KCl晶体内能表达式(1)式及平衡条件,可得或。将(1)和(2)式代入(3)式,并利用平衡条件可得 上式中的前一项由于平衡条件而等于0,后一项求微商后利用平衡条件化简得 由此知 当使晶体中相邻离子间距缩小0.5%时,即使相邻离
23、子间距变为,此时需施加的外力为 查书中表2.2及表2.5可知,m,代入上式可得 N9.由个原子(离子)所组成的晶体的体积可写成。式中为每个原子(离子)平均所占据的体积;为粒子间的最短距离;为与结构有关的常数。试求下列各种结构的值:求:简单立方点阵;面心立方点阵;体心立方点阵;金刚石点阵; NaCl点阵;解:(1)在简单立方点阵中,每个原子平均所占据的体积,故;(2)在面心立方点阵中,每个原子平均所占据的体积,故;(3)在体心立方点阵,每个原子平均所占据的体积,故;(4)在金刚石点阵中,每个原子平均所占据的体积,故;(5)在NaCl点阵中,每个原子平均所占据的体积;故。10.对于由个惰性气体原子
24、组成的一维单原子链,设平均每2个原子势为:。求:(1)原子间的平均距离; (2)每个原子的平均晶格能; (3)压缩系数。解:(1)在平衡时,有下式成立 (1) 由上式可得(2)设该个惰性气体原子组成的一维单原子链的总的相互作用势能为,那么有 (2)设为2个原子间的最短距离,则有,那么(2)式可化为 (3)其中(3)式中,。那么每个原子的平均晶格能为 (3)根据压缩系数的定义可知 (4)将(3)式代入(4)式得:11.若NaCl晶体的马德隆常数=1.75,晶格常数a=5.64,幂指数n=9。晶体拉伸而达到稳定极限时,求:离子间距增加多少?负压强的理论值是多大?解:(1)设该NaCl晶体的含有个离
25、子,则其相互作用势能为 (1)上式中的指NaCl晶体中相邻两离子间的距离。又设NaCl晶体处于平衡状态时,相邻两离子间的距离为,则有。由平衡条件可知 (2) 由(2)式可得:。当晶体拉伸而达到稳定极限时,此时相邻离子间的引力达到最大值,即有 (3)将代入(3)式可得 因而离子间距增加了(2)由(1)问可求出晶体拉伸稳定时负压强的理论值为 Pa12.已知有个离子组成的NaCl晶体,其结合能为: 。若排斥项由来代替,且当晶体处于平衡时,这两者对相互作用势能的贡献相同。试求出和的关系。解:由平衡条件可知 (1)由(1)式可求得(2)又由题意有 (3)将(2)式代入(3)式可得:13.假定在某个离子晶
26、体中,某离子间的空间能够被一种介电常数为的均匀流体渗满而不至于影响离子间的排斥作用,但库仑相互作用减少为原来的。计算这种情况下NaCl的点阵常数和结合能。解:由题意可知,当NaCl晶体被介电常数为的均匀流体渗满时,其相互作用势能为: (1)由平衡条件可知有 (2)由(2)式可求得NaCl晶体处于平衡状态时,相邻两个离子间的距离为那么NaCl的点阵常数为:结合能为14.考察一条直线,其上载有交错的个离子,最近邻之间的排斥能为。(1)试证明在平衡时,(2)令晶体被压缩,使。试证明在晶体被压缩过程中,外力做功的主项对每离子平均为。其中, 解:(1)线型离子晶体的结合能为(1)其中(1)式中的,即为线
27、型离子晶体的马德隆常数,等于;当晶体处于平衡时,有平衡条件: (2)由(2)式可得 (3)将(3)式代入(1),并将也代入(1)可得: (2)使,当很小时,在附近把展开为泰勒级数为 (4)上式中根据平衡条件有,另有 离子晶体被压缩,外力所作的功的主项(略去二级以上微量)得 上式中,压缩量是属于个离子所共有的,即个长度为的线段的总压缩量为。因此,外力对一个离子所做的功平均为 上式中,。22第三章 晶格振动与晶体的热学性质1.什么是简谐近似?解:当原子在平衡位置附近作微小振动时,原子间的相互作用可以视为与位移成正比的虎克力,由此得出原子在其平衡位置附近做简谐振动。这个近似即称为简谐近似。2.试定性
28、给出一维单原子链中振动格波的相速度和群速度对波矢的关系曲线,并简要说明其意义。解:由一维单原子链的色散关系 ,可求得一维单原子链中振动格波的相速度为 (1)而其群速度为 (2)由(1)式和(2)式可做出一维单原子链中振动格波的相速度和群速度对波矢的关系曲线如下图3.1所示:图3.1上图中,。曲线1代表,曲线2代表。由(1)式及结合上图3.1中可以看出,由于原子的不连续性,相速度不再是常数。但当时,为一常数。这是因为当波长很长时,一个波长范围含有若干个原子,相邻原子的位相差很小,原子的不连续效应很小,格波接近与连续媒质中的弹性波。由(2)式及结合上图3.1中可以看出,格波的群速度也不等于相速度。
29、但当,体现出弹性波的特征,当处于第一布区边界上,即时,而,这表明波矢位于第一布里渊区边界上的格波不能在晶体中传播,实际上它是一种驻波。3.周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,的取值将会怎样?解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件。其具体含义是设想在一长为的有限晶体边界之外,仍然有无穷多个相同的晶体,并且各块晶体内相对应的原子的运动情况一样,即第个原子和第个原子的运动情况一样,其中1,2
30、3。引入这个条件后,导致描写晶格振动状态的波矢只能取一些分立的不同值。如果晶体是无限大,波矢的取值将趋于连续。4.什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子?解:声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色爱因斯坦统计,即具有能量为的声子平均数为对于一给定的晶体,它所对应的声子种类和数目不是固定不变的,而是在一定的条件下发生变化。5.试比较格波的量子声子与黑体辐射的量子光子;“声子气体”与真实理想气体有何相同之处和不同之处?解:格波的量子声子与黑体辐射的量子光子都是能量量子,都具有一定的能量和动量,但是声子在与其它粒子相互作用时,总能量守恒,但总动量
31、却不一定守恒;而光子与其它粒子相互作用时,总能量和总动量却都是守恒的。“声子气体”与真实理想气体的相同之处是粒子之间都无相互作用,而不同之处是“声子气体”的粒子数目不守恒,但真实理想气体的粒子数目却是守恒的。6.晶格比热容的爱因斯坦模型和德拜模型采用了什么简化假设?各取得了什么成就?各有什么局限性?为什么德拜模型在极低温度下能给出精确结果?解:我们知道晶体比热容的一般公式为由上式可以看出,在用量子理论求晶体比热容时,问题的关键在于如何求角频率的分布函数。但是对于具体的晶体来讲,的计算非常复杂。为此,在爱因斯坦模型中,假设晶体中所有的原子都以相同的频率振动,而在德拜模型中,则以连续介质的弹性波来
32、代表格波以求出的表达式。爱因斯坦模型取得的最大成就在于给出了当温度趋近于零时,比热容亦趋近于零的结果,这是经典理论所不能得到的结果。其局限性在于模型给出的是比热容以指数形式趋近于零,快于实验给出的以趋近于零的结果。德拜模型取得的最大成就在于它给出了在极低温度下,比热和温度成比例,与实验结果相吻合。其局限性在于模型给出的德拜温度应视为恒定值,适用于全部温度区间,但实际上在不同温度下,德拜温度是不同的。在极低温度下,并不是所有的格波都能被激发,而只有长声学波被激发,对比热容产生影响。而对于长声学波,晶格可以视为连续介质,长声学波具有弹性波的性质,因而德拜的模型的假设基本符合事实,所以能得出精确结果
33、7.声子碰撞时的准动量守恒为什么不同于普通粒子碰撞时的动量守恒?U过程物理图像是什么?它违背了普遍的动量守恒定律吗?解:声子碰撞时,其前后的总动量不一定守恒,而是满足以下的关系式其中上式中的表示一倒格子矢量。对于的情况,即有,在碰撞过程中声子的动量没有发生变化,这种情况称为正规过程,或N过程,N过程只是改变了动量的分布,而不影响热流的方向,它对热阻是没有贡献的。对于的情况,称为翻转过程或U过程,其物理图像可由下图3.2来描述:图3.2 U过程物理示意图在上图3.2中,是向“右”的,碰撞后是向“左”的,从而破坏了热流的方向,所以U过程对热阻是有贡献的。U过程没有违背普遍的动量守恒定律,因为声子
34、不是实物量子,所以其满足的是准动量守恒关系。8.简要说明简谐近似下晶体不会发生热膨胀的物理原因;势能的非简谐项起了哪些作用?解:由于在简谐近似下,原子间相互作用能在平衡位置附近是对称的,随着温度升高,原子的总能量增高,但原子间的距离的平均值不会增大,因此,简谐近似不能解释热膨胀现象。势能的非简谐项在晶体的热传导和热膨胀中起了至关重要的作用。9.已知由个相同原子组成的一维单原子晶格格波的态密度可表示为。式中是格波的最高频率。求证它的振动模总数恰好等于。解:由题意可知该晶格的振动模总数为 10.若格波的色散关系为和,试导出它们的状态密度表达式。解:根据状态密度的定义式可知 (1)其中表示在间隔内晶
35、格振动模式的数目。如果在空间中,根据作出等频率面,那么在等频率面和之间的振动模式的数目就是。由于晶格振动模在空间分布是均匀的,密度为(为晶体体积),因此有 (2)将(2)式代入(1)式可得到状态密度的一般表达式为 (3)(3)式中表示沿法线方向频率的改变率。当时,将之代入(3)式可得 当,将之代入(3)式可得 11.试求质量为,原子间距为,力常数交错为,的一维原子链振动的色散关系。当时,求在和处的,并粗略画出色散关系。解:下图3.3给出了该一维原子链的示意图a2m 22112 x2n-2 x2n+1 x2n x2n+1 x2n+2 x2n+3 图3.3在最近邻近似和简谐近似下,第2n和第(2n
36、1)个原子的运动方程为 (1)当时,上述方程组(1)可变为 (2)为求格波解,令 (3)将(3)式代入(2)式,可导出线性方程组为 (4)令,从,有非零解的系数行列式等于零的条件可得 (5)由(5)式可解出当时,当时,其色散关系曲线如下图3.4所示:图3.4 原子间的力常数不相等的双原子链的晶格振动色散关系曲线 12.如有一维布喇菲格子,第个原子与第个原子之间的力常数为;而第个原子与第个原子的力常数为。(1) 写出这个格子振动的动力学方程;(2) 说明这种情况也有声学波和光学波;(3) 求时,声学波和光学波的频率;(4) 求(为晶格常数)时,声学波和光学波的频率。解:(1)此题与(11)题基
37、本相似,在最近邻近似和简谐近似下,同样可以写出第和第个原子的动力学方程为 (1)(2)为求出方程组(1)的格波解,可令 (2)于是将(2)式代入(1)式,可导出线性方程组为 (3)令,从、有非零解的系数行列式等于零的条件可得 (4)由(4)式可解出 (5)由此可知,的取值也有和之分,即存在声学波和光学波(3)由(5)式可知当时,有声学波频率,光学波频率(4)同样由(5)式可知当时,有声学波频率,光学波频率13.在一维双原子链中,如,(1)求证: ; 。(2)画出与的关系图(设)。解:(1)在一维双原子链中,其第个原子与第个原子的运动方程为 (1)为解方程组(1)可令 (2)将(2)式代入(1)
38、式可得出(3)从、有非零解,方程组(3)的系数行列式等于零的条件出发,可得 可解出得 (4)当(4)式中取“”号时,有 (5),(5)式中有,那么(5)式可简化为 当(4)式中取“”号时,有 (6),(6)式中有,那么(6)式可简化为 (2)当时,则(4)式可化为此时,与的关系图,即色散关系图如下图3.5所示:图3.5 一维双原子链振动的色散关系曲线14.在一维复式格子中,如果,。求:(1) 光学波频率的最大值、最小值及声学波频率的最大值;(2) 相应的声子能量是多少eV?(3) 这3种声子在300K时各有多少个?(4) 如果用电磁波激发光频振动,要激发最大光学频率的声子所用的电磁波长在什么波段?解:(1)由于光学波频率的最大值和最小值的计算公式分别为: 上式中为约化质量所以有: 而声学波频率的最大值的计算公式为: 所以有: (2)相应的声子能量为:(3)由于声子属于玻色子,服从玻色爱因斯坦统计,则有(4)如用电磁波来激发光频振动,则要激发最大光学频率的声子所用的电磁波长应满足如下关系式:15.在一维双原子晶格振动的情况下,证明在布里渊区边界处,声学支格波中所有轻原子静止,而光学支格波中所有重原子静止。画出这时原子振动的图像。解:设第个原子为轻原子,其质量为,第个原子为重原子,其质量为,则它们的运动方程为 (1)为解方程组(1)可令 (2)将(2)式代入(1)式可得出