资源描述
石壕中学数学晋级试题A(1)
您申报的级别: A 级 差距:
班级: 姓名: 获取等级:恭喜您获得好成绩,
一、选择题(本大题共12小题,每小题4分共48分)
1.﹣ 的相反数是( )
A. B.﹣ C.﹣ D.
2.如图,由几个小正方体组成的立体图形的从上面看是( )
A. B. C. D.
3.某市2015年元旦的最高气温为2℃,最低气温为﹣8℃,那么这天的最高气温比最低气温高( )
A.﹣10℃ B.﹣6℃ C.6℃ D.10℃
4.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,将2500000用科学记数法表示应为( )
A.25×105 B.2.5×106 C.0.25×107 D.2.5×107
5.下列运算正确的是( )
A.4m﹣m=3 B.m2+m3=m5 C.4m+5n=9mn D.m2+m2=2m2
6.“把弯曲的河道改直,就能缩短路程”,其中蕴含的数学道理是( )
A.两点之间线段最短 B.直线比曲线短
C.两点之间直线最短 D.两点确定一条直线
7.下列调査中,适合采用全面调査(普査)方式的是( )
A.对綦江河水质情况的调査
B.对端午节期间市场上粽子质量情况的调査
C.对某班50名同学体重情况的调査
D.对某类烟花爆竹燃放安全情况的调査
8.如图,C、D是线段AB上的两点,且D是线段AC的中点,若AB=10cm,BC=4cm,则AD的长为( )
A.2cm B.3cm C.4cm D.6cm
9.若关于x的方程2x+a﹣4=0的解是x=﹣2,则a的值等于( )
A.﹣8 B.0 C.2 D.8
10.有一位工人师傅将底面直径是10cm,高为80cm的“瘦长”形圆柱,锻造成底面直径为40cm的“矮胖”形圆柱,则“矮胖”形圆柱的高是( )
A.4cm B.5cm C.6cm D.7cm
11、用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第10个图案需要的黑色五角星的个数是( )
A、15 B、16 C、17 D、18
12.若多项式x2﹣3x+2的值为6,则多项式3x2﹣9x﹣5的值为( ).
A. 13 B.19 C.7 D.12
二、填空题(本大题共6小题,每小题4分,共24分)
13.我国现采用国际通用的公历纪年法,如果我们把公元2015年记作+2015年,那么,处于公元前500年的春秋战国时期可表示为__________.
14.12am﹣1b3与是同类项,则m+n=__________.
15.如图所示,将图沿虚线折起来,得到一个正方体,那么“我”的对面是__________(填汉字).
16.如图,∠AOC和∠DOB都是直角,如果∠DOC=35°,那么∠AOB的补角=__________.
17、若|a+|+(b﹣2)2=0,则(ab)2015=__________.
18.如图,已知线段AC,点D为AC的中点,BC=AB,BD=1cm,则AC=__________.
三、 解答题(本大题共2小题,每小题7分,共14分)
19、计算:
﹣12015+24÷(﹣2)3﹣32×()2
20. 解关于x的方程:.
四、解答题(每题10分,共40分)
21、先化简,再求值:x2+(2xy﹣3y2)﹣2(x2+yx﹣2y2),其中x=﹣1,y=2.
22.如图,OB是∠AOC的角平分线,OD是∠COE的角平分线,如果∠AOB=40°,∠COE=60°,则∠BOD的度数为多少度?
23.一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?
24、如图,点C在AB上,点M、N分别是AC、BC的中点,
(1)若AC=12cm,BC=10cm,求线段MN的长;
(2)若点C为线段AB上任意一点,满足AC+BC=acm,其它条件不变,你能猜想MN的长度吗?并说明理由;
(3)若点C在线段AB的延长线上,且满足AC﹣BC=bcm,点M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.请用一句简洁的话描述你发现的结论.
五、解答题(每题12分,共24分)
25、某公司要把240吨白砂糖运往某市的A、B两地,用大、小两种货车共20辆,恰好能一次性装完这批白砂糖.已知这两种货车的载重量分别为15吨/辆和10吨/辆,运往A地的运费为:大车630元/辆,小车420元/辆;运往B地的运费为:大车750元/辆,小车550元/辆.
(1)求两种货车各用多少辆;
(2)如果安排10辆货车前往A地,其中调往A地的大车有a辆,其余货车前往B地,若设总运费为W,求W与a的关系式(用含有a的代数式表示W).
26、已知:如图所示,O为数轴的原点,A,B分别为数轴上的两点,A点对应的数为﹣30,B点对应的数为100.
(1)A、B间的距离是__________;
(2)若点C也是数轴上的点,C到B的距离是C到原点O的距离的3倍,求C对应的数;
(3)若当电子P从B点出发,以6个单位长度/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位长度/秒的速度向左运动,设两只电子蚂蚁在数轴上的D点相遇,那么D点对应的数是多少?
(4)若电子蚂蚁P从B点出发,以8个单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从A点出,以4个单位长度/秒向右运动.设数轴上的点N到原点O的距离等于P点到O的距离的一半,有两个结论①ON+AQ的值不变;②ON﹣AQ的值不变.请判断那个结论正确,并求出结论的值.
展开阅读全文