资源描述
用硅藻土回收染料废水中的亚硫酸钠
吉林化学工业公司染料厂排出的工业废水中含有萘、萘酚、萘酚衍生物、Na2SO3及NaHSO3等物质,其中Na2SO3占14.84%。为提取废水中的Na2SO3晶体,先后采取了加热蒸馏有机物、筛网(滤纸)过滤、活性炭吸附等方法,但效果均不够理想,因此,采用硅藻土作助滤剂进行试验。
1 试验原理与方法
1.1 原理
按机械载流的原理,助滤剂颗粒可以载流杂质,吸附一定量的萘、萘酚、萘酚衍生物和其他杂质,使澄清液体流出以达到过滤的目的。因而,助滤剂的结构形式、间隙大小、表面组成、吸附能力等对滤液的澄清度有很大影响,同时,滤液的粘度、密度、温度等对过滤效果也有一定的影响。试验采用先预涂再进行主体过滤的方法,预涂作用在于形成预涂层,从而延长助滤剂的过滤周期。助滤剂过滤过程主要是形成一个滤饼,这个滤饼具有液体的可透性,在液体透过过程中,助滤剂的颗粒对杂质颗粒有一定的吸附作用。如果没有助滤剂,滤饼只是由杂质颗粒沉降形成,液体的透过性极差。
对于恒压过滤,应用Carman方程:
t/V=[U2αCsYmt/2ΔP2A3]V (1)
式中 V——时间t(s)内的总流量,m3
U——被过滤液的粘度,Pa·s
α——过滤阻抗,m/kg
Cs——被过滤液体的总渣量,kg/m3
Ym——单位面积滤材的比阻抗,m-1
A——过滤饼的面积,m2
ΔP——过滤压力,Pa
式(1)中如果滤饼不可压缩,则α不变,t/V对V是直线关系;如果滤饼可压缩,则α改变,t/V对V不是直线关系。直线关系有利于过滤(且斜率越小越有利于过滤),非直线关系不利于过滤。萘酚类染料工业废水滤出液中的亚硫酸钠含量用分光光度法测定。溴百里香酚兰为酸碱指示剂,其变色范围为pH=6.0~7.6,颜色由黄变蓝。根据吸收度与浓度成正比的关系即可求得未知物中Na2SO3的百分含量。
1.2 试验方法
原水为吉林化学工业公司染料厂排出的工业废水(Na2SO3占14.84%),红褐色。助滤剂为吉林大学物理化学研究室研制的高温硅藻土(含无定形SiO285%~94%)。亚硫酸钠、碳酸钠均为分析纯。
过滤装置如图1所示,其过滤面积为3.85×10-5m2,直径为7.0×10-2 m,高度为5.0×10-2 m(亦可根据过滤量决定)。过滤的目的是去除废水中高于5%的NaHSO3(2NaHSO3+Na2CO3→2Na2SO3+H2O+CO2↑)。试验时,在1 kg废水中加入1.5×10-2 kg的Na2CO3,将0.20 L含硅藻土助滤剂的废水从加料口加入、抽滤,在滤纸(筛网)上形成预涂层;将流出液再次通过加料口加入,重复三次,完成预涂。最后通入具有一定比例助滤剂的废水,加压进行过滤。全部过滤结束后,用少许蒸馏水重复过滤2次,以保证滤液中Na2SO3的含量。
取滤液用分光光度法分析Na2SO3的相对含量,加热浓缩,去除多余的水分和少量酚,干燥后即得白色晶体Na2SO3。
2 结果与讨论
2.1 助滤剂最佳用量的选取
预涂5.0×10-3 kg(1.30kg/m2)助滤剂,主体过滤用量分别为:0.10×10-2、0.25×10-2、0.50×10-2、1.00×10-2、2.00×10-2 kg/L;压力表压力为4.90×104 Pa。各种助滤剂用量试验数据见表1。
表1 助滤剂用量试验数据
助滤剂用量(×10-2kg/L)
0.10
0.25
0.50
1.00
2.00
斜率
0.21
0.20
0.19
0.28
Na2SO3相对含量(%)
17.93
18.20
19.40
19.92
19.92
经试验,斜率小的助滤效果好,用量为0.50×10-2 kg/L的为最佳,斜率比用量为1.00×10-2 kg/L时的略大,但二者相差很小,Na2SO3的相对含量相差得也很小。用量为0.25×10-2 kg/L时,斜率虽然也很小,但用量过少,预涂不均匀,过滤效果不理想,同时,Na2SO3的相对含量增加得也很少。所以,最佳助滤剂用量的选择为0.50×10-2 kg/L。助滤剂用量为 0.10×10-2 kg/L和2.00×10-2 kg/L的过滤效果不好,前者滤饼太薄不均匀,Na2SO3相对含量增加值很少;后者助滤剂用量多,滤饼太厚,影响过滤速度,虽然Na2SO3 的相对含量有所增加,但此方法是不可取的。因此,在压力为4.90×104 Pa的情况下,预涂5.0×10-3 kg(1.30kg/m2) 助滤剂,主体过滤最佳用量为0.50×10-2 kg/L。
2.2 最佳过滤压力的选取
预涂5.0×10-3 kg(1.30kg/m2)助滤剂,主体过滤用量为0.50×10-2 kg/L。各种过滤压力的试验数据见表2。
表2 各种过滤压力试验数据
压力(×104Pa)
2.45
4.90
7.35
9.80
19.60
斜率
0.20
0.01
0
0
Na2SO3相对含量(%)
18.21
19.91
19.92
19.89
18.84
由试验可知,压力为2.45×104 Pa时,得一条曲线;压力为4.90×104 Pa时,得一条直线,斜率为0.20,Na2SO3的相对含量增加到19.91%;压力为9.80×104 Pa时,得一条直线,斜率为零,Na2SO3的相对含量增加到19.89%;而当压力为1.96×105 Pa时,斜率为零,但Na2SO3的相对含量没有增加,主要原因是压力过大、流速过快,助滤剂没有起到吸附杂质的作用。可见,压力为2.45×104 Pa和1.96×105 Pa的过滤效果不好,是不可取的。所以,最佳过滤压力的选取应在(4.90~9.80)×104Pa的范围之间。
3 结论
采用硅藻土作助滤剂进行处理萘酚类染料工业废水回收亚硫酸钠的过滤试验结果表明:选用预涂5.0×10-3 kg(1.30kg/m2)助滤剂,主体过滤用量应为0.50×10-2 kg/L;压力应在(4.90~9.80)×104 Pa的范围之间选取。过滤液中的亚硫酸钠的含量可增加到23.92%,加热浓缩滤液,去除多余水分和少量酚类,干燥后可得到白色的亚硫酸钠晶体,其回收率为87.33%,纯度为89.81%。采用这种方法,能使被过滤的液体流速在总体上比筛网过滤快、流出的滤液澄清度好(浅粉色)、亚硫酸钠的回收率高(筛网过滤为74.71%)、含量增加(筛网过滤为14.84%)、纯度提高(筛网过滤为68.14%)。
据资料报道:近年来,人们发现不少微生物及其所分泌的大分子或高分子化合物具有使微细颗粒疏水絮凝的功能。研究结果也证实,某些微生物的衍生物确实既可以加速颗粒沉降,提高物料过滤速度,又能降低滤饼水分。此种生化方法不仅可以产生化学反应难以合成的理想的分子结构的助滤剂,而且原料来源也不像化学反应那样要求严格。因此,采用助滤剂处理液体的分离技术将会有广阔的发展前景。
用过量投矾处理原水中的兰藻
随着城市发展和人口活动不断增加,环保设施未完全配套,漓江水富营养化问题日趋严重。桂林市瓦窑水厂位于城区漓江下游,其取水头部位于净瓶山下的河弯处,上游一公里以内有大的排污口三处。至枯水季节,河床外露,水流动性小,水质恶化。从96年至99年,每年冬春季节,兰藻均大量繁殖,尤其以1999年最为严重,给瓦窑水厂水处理带来极大困难。在公司生产部门的支持帮助下,瓦窑水厂逐步摸索出一些处理方法,尤其是过量投矾方式的采用,使瓦窑水厂渡过了1999年供水危机。
一 该厂处理原水中兰藻的一些渐进做法
瓦窑水厂冬春期原水浊度为3~6NTU,水温8~16℃,PH值6.9~7.2。兰藻在水体中呈胶体丝状,约4~20mm长,颜色白而略带浅黄。由于河水浊度低,水中悬浮颗粒的数目少,碰撞的机会与次数也少,再加上兰藻的丝状体重较小,低温水粘度较大,水中细小颗粒杂质与兰藻的丝状碰撞的机会更少,所以,凝聚效果很差。
1、采用加大一次氯与增加反冲洗时间
在兰藻出现初期,该厂处理原水的方式仅是增加滤池反冲洗时间(由原来的8分钟增加到15分钟)和加大一次氯的投氯量,将一次氯由2.0~2.5mg/L增加到3.5~4.0mg/L,因有机物含量高,此时一次氯只能测到总氯,将总氯控制由原来的0.6mg/L上升到0.8mg/L。此时我们发现,大部分兰藻被杀死或失去活力,死亡的兰藻由白黄色变成断丝状的微黄色絮体,随沉淀水流到滤池,这些絮体在滤池中与滤砂、污泥等迅速互相粘附,结成黄褐色泥毯。使滤池的工作效率很快降低,过滤周期缩短,即使延长滤池的反冲洗时间,但由于兰藻形成的网状泥毯粘附力较强,密度较大,反冲洗不易清理干净,因而又影响下一个过滤周期,滤池工作周期由24小时下降至8~10小时,从而使滤池的工作周期一次比一次短。该厂不得不多次组织人力人工铲除滤砂表面的泥毯,但只是短时间好转(1~2天内),无法解决原水中的兰藻问题。同时,兰藻穿透滤层现象时有发生,影响出厂水浊度(超过3NTU)和外观指标。(见表)
2、投加少量硫酸铝
针对出厂水出现的问题,在前述措施的基础上投入少量硫酸铝,一般投加3~5mg/L矾量,以降低出厂水浊度,从生产运行情况来看,反应池后部有极细小的矾花出现,兰藻与矾花有一定的松散粘附,出厂水浊度下降至2.5NT以下。同时,也不再出现兰藻穿透层现象,但滤池的负担却呈加重趋势,兰藻与矾花疏松颗粒进入滤池后,迅速与滤砂粘附形成泥球,比重较大,反冲水冲不起来,滤池周期由投矾前的8-10小时下降至4-8小时,自用水率大为增加,产水量下降,不得不多次降压供水,给用户带来不便(见表)
3、投加过量硫酸铝
仔细观察矾花,发现兰藻与矾花有一定的粘附作用,兰藻属微生物范畴,带负电的可能性较大。欲想利用增大矾量来观察处理兰藻的效果,将投矾量增大至10~15mg/L,这时可以观察到反应池中后部出现疏松的白色矾花大颗粒。同时,将兰藻吸附成团,兰藻由原来的丝状体变成团状,进入沉淀后,由于颗粒的密度因吸附兰藻而增大,在沉淀池内即可沉淀,进入滤池的兰藻大为减少,从而减轻了滤池负担,滤池工作周期恢复到13~18小时以上,反冲洗时间也由原来的15分钟恢复到10分钟。(见表)
几种方式处理原水的效果比较表
原水情况
处理方式
滤池工作周期
(人时)
滤池反冲洗时间
(分钟)
自用水率
(%)
出厂水浊度
(NTU)
投矾量
一次耗氯量
无兰藻
无
2.0-2.5mg/L
24-27
8-10
3-3.5
1.8-2.5
有兰藻
无
3.5-4.0mg/L
8-10
15
7-9
2.6-4.5
3-5mg/L
3.5-4.0mg/L
4-8
15-20
10.4-13
1.0--2.5
10-20mg/L
3.5-4.0mg/L
13-18
10
4.9-5.7
1.0以下
二 采用过量投矾方式处理兰藻的理论论据
对硫酸铝等金属盐混剂来说,其混凝机理中同时具有吸附架桥和电性中和脱稳作用。当投量很多时,还具有卷扫作用。
硫酸铝Al2(SO4)3.18H2O溶于水后,立即离解出AL3+,水合高子水解时,配位水分子可以失去H+而形成单羟基单核配合物,反应如下:
[Al(H2O)6]3++H2O → [Al(OH)(H2O5]2++H3O+
单羟基单核配合物进一步分解
[Al(OH)(H2O5]2++ H2O → [Al(OH)2(H2O)4]++H3O+
[Al(OH)2(H2O)4]2+ H2O → [Al(OH)3(H2O)3]++H3O+
这种水解过程中还存在许多中间过程,这是因为,初步水解产物中的羟基OH-具有桥键性质。在由(H2O)6]3+最终趋于[Al(OH)3(H2O)3]的中间过程中,羟基可把单核配合物通过桥键配合或缩聚成多核配合物或高聚物。据有关资料认为,可能存在Al6(OH)14]4+、[Al6(OH)15]3+、[Al2(OH)20]4+......等等。
当硫酸铝投加过量时,水体PH值降低,高电核低聚合度的多核配合离子或者离聚合度的氢氧化铝盐占主要地位,可以吸附卷带水中的胶粒或带负电藻类进行沉淀分离,这种现象称沉淀物的卷扫作用,对处理低浊度、高密度兰藻原水较为有效。
三 还必须注意的几个问题
1、应增大一次氯的投加量,因为未被氯气杀死的兰藻结合成的矾花,在日照下进行光合作用,很快产生氧气形成气泡附于矾花上,使其在沉淀内上浮而难于沉淀,极易重新随沉淀水流进滤池。另外,也避免兰藻在净水构筑物中繁殖。
2、定期将沉淀池积泥排净,避免兰藻尸体因在池底停留时间过长发臭而重新浮起。
3、处理原水时净水构筑物尽可能在满负荷以下,避免负荷过大使沉淀水上升速度加快将矾花藻体带入滤池。
4、应在沉淀池后部配水槽内安装格网,以拦截部分从沉淀池流出的兰藻,来进一步保护滤池。
四 成功实例
从1999年3月中旬开始,瓦窑水厂供水得到保证,期间从3月10月~4月20日,瓦窑水厂原水水质极度恶化,兰藻最多时在原水中如雪片一般,COD高达6.15mg/L,溶解氧最低降到0.39mg/L,原水出现腥臭味,但由于采取上述一系列措施,尤其是采用过量投矾方式,使滤池工作基本正常。同时,由于出厂水浊度降低(在1.0NTU以下),对原水中的有机物,异味的去除也有一定效果,出厂水均达到国家饮用水水质标准。
1999年11月1日,瓦窑水厂取水头部再次出现高密度兰藻,其它兄弟水厂也出现类似情况,供水受到影响,但瓦窑厂采用过量投矾方式,将投矾量加至12~18mg/L(原水水浊度4.6~5.2NTU),供水正常,滤池周期未受影响,出厂水水质合格。
值得欣慰的是,瓦窑水厂取水头部水质恶化问题已引起市人大、环保等部门重视,相信漓江水质有望得到改善。
展开阅读全文