收藏 分销(赏)

《弧长和扇形面积》-教学设计.doc

上传人:仙人****88 文档编号:9283746 上传时间:2025-03-19 格式:DOC 页数:6 大小:244.50KB
下载 相关 举报
《弧长和扇形面积》-教学设计.doc_第1页
第1页 / 共6页
《弧长和扇形面积》-教学设计.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
《弧长和扇形面积》教学设计 课题 弧长和扇形面积 课型 新授课 教 学 目 标 知识与 能力 了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用. 过程与 方法 通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长L=和扇形面积S扇=的计算公式,并应用这些公式解决一些题目. 情感态度与价值观 通过本节的教学,使学生进一步了解量变引起质变的辩证唯物主义观点。 教学重点 n°的圆心角所对的弧长L=,扇形面积S扇=及其它们的应用. 教学难点 两个公式的应用. 教学方法 导入法 教学用具 小黑板、圆规、直尺、量角器、纸板. 板 书 设 计 弧长和扇形面积 1.n°的圆心角所对的弧长L= 2.扇形的概念. 3.圆心角为n°的扇形面积是S扇形= 教学过程 教师活动 学生活动 一、复习引入 (老师口问,学生口答)请同学们回答下列问题. 1.圆的周长公式是什么? 2.圆的面积公式是什么? 3.什么叫弧长? 老师点评:(1)圆的周长C=2R (2)圆的面积S图=R2 (3)弧长就是圆的一部分. 二、探索新知 (一)观看微课:《弧长和扇形面积公式推导》 (二)请同学们独立完成下题:设圆的半径为R,则: 1.圆的周长可以看作______度的圆心角所对的弧. 2.1°的圆心角所对的弧长是_______. 3.2°的圆心角所对的弧长是_______. 4.4°的圆心角所对的弧长是_______. …… 5.n°的圆心角所对的弧长是_______. (老师点评)根据同学们的解题过程,我们可得到: n°的圆心角所对的弧长为 圆心角的两个半径的n°圆心角所对的弧所围成的圆的一部分的图形,如图: 像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形. (三) 请同学们结合圆心面积S=R2的公式,独立完成下题: 1.该图的面积可以看作是_______度的圆心角所对的扇形的面积. 2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______. 3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______. 4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______. …… 5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______. 老师检察学生练习情况并点评 1.360 2.S扇形=R2 3.S扇形=R2 4.S扇形= 5.S扇形= 因此:在半径为R的圆中,圆心角n°的扇形 S扇形= 例1.如图,已知扇形AOB的半径为10,∠AOB=60°,求的长(结果精确到0.1)和扇形AOB的面积结果精确到0.1) 分析:要求弧长和扇形面积,只要有圆心角,半径的已知量便可求,本题已满足. 解:的长=×10=≈10.5 S扇形=×102=≈52.3 因此,的长为25.1cm,扇形AOB的面积为150.7cm2. 三、巩固练习 课本P122练习. 四、应用拓展 例3.(1)操作与证明:如图所示,O是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖部分的总长度为定值a. (2)尝试与思考:如图a、b所示,将一块半径足够长的扇形纸板的圆心角放在边长为a的正三角形或边长为a的正五边形的中心点处,并将纸板绕O旋转,,当扇形纸板的圆心角为________时,正三角形边被纸覆盖部分的总长度为定值a;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖部分的总长度也为定值a. (a) (b) (3)探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,若将纸板绕O点旋转,当扇形纸板的圆心角为_______时,正n边形的边被纸板覆盖部分的总长度为定值a,这时正n边形被纸板所覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系(不需证明);若不是定值,请说明理由. 解:(1)如图所示,不妨设扇形纸板的两边与正方形的边AB、AD分别交于点M、N,连结OA、OD. ∵四边形ABCD是正方形 ∴OA=OD,∠AOD=90°,∠MAO=∠NDO, 又∠MON=90°,∠AOM=∠DON ∴△AMO≌△DNO ∴AM=DN ∴AM+AN=DN+AN=AD=a 特别地,当点M与点A(点B)重合时,点N必与点D(点A)重合,此时AM+AN仍为定值a. 故总有正方形的边被纸板覆盖部分的总长度为定值a. (2)120°;70° (3);正n边形被纸板覆盖部分的面积是定值,这个定值是. 五、归纳小结(学生小结,老师点评) 本节课应掌握: 1.n°的圆心角所对的弧长L= 2.扇形的概念. 3.圆心角为n°的扇形面积是S扇形= 4.运用以上内容,解决具体问题. 六、布置作业 1.教材P124 复习巩固1、2、3 P125 综合运用5、6、7. 2.选用课时作业设计. 《作业设计》 一、 选择题 1.已知扇形的圆心角为120°,半径为6,则扇形的弧长是( ). A.3 B.4 C.5 D.6 2.如图1所示,把边长为2的正方形ABCD的一边放在定直线L上,按顺时针方向绕点D旋转到如图的位置,则点B运动到点B′所经过的路线长度为( ) A.1 B. C. D. (1) (2) (3) 3.如图2所示,实数部分是半径为9m的两条等弧组成的游泳池,若每条弧所在的圆都经过另一个圆的圆心,则游泳池的周长为( ) A.12m B.18m C.20m D.24m 二、填空题 1.如果一条弧长等于R,它的半径是R,那么这条弧所对的圆心角度数为______, 当圆心角增加30°时,这条弧长增加________. 2.如图3所示,OA=30B,则的长是的长的_____倍. 三、综合提高题 1.已知如图所示,所在圆的半径为R,的长为R,⊙O′和OA、OB分别相切于点C、E,且与⊙O内切于点D,求⊙O′的周长. 2.如图,若⊙O的周长为20cm,⊙A、⊙B的周长都是4cm,⊙A在⊙O内沿⊙O滚动,⊙B在⊙O外沿⊙O滚动,⊙B转动6周回到原来的位置,而⊙A只需转动4周即可,你能说出其中的道理吗? 3.如图所示,在计算机白色屏幕上,有一矩形着色画刷ABCD,AB=1,AD=,将画刷以B为中心,按顺时针转动A′B′C′D′位置(A′点转在对角线BD上),求屏幕被着色的面积. 答案: 一、1.B 2.D 3.D 二、1.45° R 2.3 三、1.连结OD、O′C,则O′在OD上 由=R,解得:∠AOB=60°, 由Rt△OO′C解得⊙O′的半径r=R,所以⊙O′的周长为2r=R. 2.⊙O、⊙A、⊙B的周长分别为20cm,4cm,4cm, 可求出它的半径分别为10cm、2cm、2cm, 所以OA=8cm,OB=12cm, 因为圆滚动的距离实际等于其圆心经过的距离, 所以⊙A滚动回原位置经过距离为2×8=16=4×4, 而⊙B滚动回原位置经过距离为2×12=24=4×6. 因此,与原题意相符. 3.设屏幕被着色面积为S, 则S=S△ABD+S扇形BDD`+S△BC`D`=S矩形ABCD+S扇形BDD`, 连结BD′, 在Rt△A′BD′中,A′B=1,A′D′=AD=, ∴BD′=BD=2,∠DBD′=60°, ∴S=·22+1·=+. 同学们独立完成下题 学生提问后,老师点评:(1)这头牛吃草的最大活动区域是一个以A(柱子)为圆心,5m为半径的圆的面积. 请同学们结合圆心面积S=R2的公式,独立完成下题: 1.该图的面积可以看作是_______度的圆心角所对的扇形的面积. 2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______. 3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______. 4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______. …… 5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______. 一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,若将纸板绕O点旋转,当扇形纸板的圆心角为_______ 正n边形的边被纸板覆盖部分的总长度为定值a,这时正n边形被纸板所覆盖部分的面积是否也为定值?若为定值,写出它与正n边形面积S之间的关系(不需证明);若不是定值,请说明理由. 一、1.B 2.D 3.D 二、1.45° R 2.3 三、1.连结OD、O′C,则O′在OD上 由=R,解得:∠AOB=60°, 由Rt△OO′C解得⊙O′的半径r=R,所以⊙O′的周长为2r=R. 教 学 反 思 应熟练记忆弧长及扇形的面积公式
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服