资源描述
第二章 一元二次方程
1 认识一元二次方程
第1课时 一元二次方程的定义
1.探索一元二次方程及其相关概念,能够辨别各项系数,能够从实际问题中抽象出方程知识.
2.在探索问题的过程中使学生感受方程是刻画现实世界的一个模型,体会方程与实际生活的联系.
3.通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用.
【教学重点】一元二次方程的概念.
【教学难点】如何把实际问题转化为数学方程.
一、情境导入,初步认识
问题1:有一块矩形铁皮,长100cm,宽50cm.在它的四个角分别切去一个正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是3600cm2,那么铁皮各角应切去多大的正方形?
问题2:一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米,如果梯子的顶端下滑1米,那么梯子的底端滑动多少米?
你能设出未知数,列出相应的方程吗?
【教学说明】为学生创设了一个回忆、思考的情境,又是本课一种很自然的引入,为本课的探究活动做好铺垫.
二、思考探究,获取新知
你能通过观察下列方程得到它们的共同特点吗?
(1)(100-2x)(50-2x)=3600 (2)(x+6)2+72=102
【教学说明】
分组合作、小组讨论,经过讨论后交流小组的结论,可以发现上述方程都不是所学过的方程,特点是两边都是整式,且整式的最高次数是2.
【归纳结论】方程的等号两边都是整式,只含有一个未知数,且未知数的最高次数是2的方程叫作一元二次方程;
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式
ax2+bx+c=0(a、b、c为常数,a≠0)
这种形式叫作一元二次方程的一般形式.其中ax2是二次项,a是二次项的系数;bx是一次项,b是一次项系数;c是常数项.
三、运用新知,深化理解
1.下列方程是一元二次方程的有.
(1)x2+1/x-5=0 (2)x2-3xy+7=0 (3)x+ =4
(4)m3-2m+3=0 (5)x2-5=0 (6)ax2-bx=4
2.已知方程(m+2)x2+(m+1)x-m=0,当m满足_______时,它是一元一次方程;当m满足_______时,它是一元二次方程.
3.一元二次方程(x+1)2-x=3(x2-2)化成一般形式是_______.
4.把方程-5x2+6x+3=0的二次项系数化为1,方程可变为( )
A.x2+6/5x+3/5=0 B.x2-6x-3=0 C.x2-6/5x-3/5=0 D.x2-6/5x+3/5=0
5.已知(m+3)x2-3mx-1=0是一元二次方程,则m的取值范围是_______.
6.把方程(1-3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项、二次项系数、一次项、一次项系数及常数项.
5,一次项是8x,一次项系数是8,常数项是-2(因为一元二次方程的一般形式是三个单项式的和,所以不能漏写单项式系数的符号).
7.关于x的方程mx2-3x=x2-mx+2是一元二次方程,m应满足什么条件?
四、师生互动、课堂小结
本节课你学到了哪些内容和方法?
【教学说明】小结反思中,不同学生有不同的体会,要尊重学生的个体差异,激发学生主动参与意识,为每个学生创造数学活动中获得活动经验的机会.
1.布置作业:教材“习题2.1”中第1、2题.
2.完成创优作业中本课时“课时作业”部分.
展开阅读全文