资源描述
机械能守恒定律应用中的几种模型
机械能守恒定律属于教学中的重点知识,在实际问题中我们如果能正确建立几种典型的机械能守恒的模型,将有利于对此类问题的分析和解决.
(1)轻连绳模型
【典例1】 如图所示,细绳跨过定滑轮悬挂两物体M和m,且M>m,不计摩擦,系统由静止开始
运动过程中( ).
A.M、m各自的机械能分别守恒
B.M减少的机械能等于m增加的机械能
C.M减少的重力势能等于m增加的重力势能
D.M和m组成的系统机械能守恒
解析 M下落过程中,绳的拉力对M做负功,M的机械能减少;m上升过程,绳的拉力对m做正功,m的机械能增加,A错误;对M、m组成的系统,机械能守恒,易得B、D正确;M减少的重力势能并没有全部用于m重力势能的增加,还有一部分转变成M、m的动能,所以C错误.
答案 BD
点评:此类问题要认清物体的运动过程,注意物体运动到最高点或最低点时速度相同。
(2)轻连杆模型
【典例2】 质量分别为m和M(其中M=2m)的两个小球P和Q,中间用轻质杆固定连接,在杆的中点O处有一个固定转轴,如图所示.现在把杆置于水平位置后自由释放,在Q球顺时针摆动到最低位置的过程中,下列有关能量的说法正确的是( ).
A.Q球的重力势能减少、动能增加,Q球和地球组成的系统机械能守恒
B.P球的重力势能、动能都增加,P球和地球组成的系统机械能不守恒
C.P球、Q球和地球组成的系统机械能守恒
D.P球、Q球和地球组成的系统机械能不守恒
解析 Q球从水平位置下摆到最低点的过程中,受重力和杆的作用力,杆的作用力是Q球运动的阻力(重力是动力),对Q球做负功;P球是在杆的作用下上升的,杆的作用力是动力(重力是阻力),对P球做正功.所以,由功能关系可以判断,在Q球下摆过程中,P球重力势能增加、动能增加、机械能增加,Q球重力势能减少、机械能减少;由于P球和Q球整体只有重力做功,所以系统机械能守恒.本题的正确答案是B、C.
答案 BC
点评:此类问题应注意在运动过程中各个物体之间的角速度、线速度的关系.
(3)轻弹簧模型
【典例3】 如图所示, 固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,弹簧处于原长h.让圆环沿杆滑下,滑到杆的底端时速度为零.则在圆环下滑过程中( ).
A.圆环机械能守恒
B.弹簧的弹性势能先增大后减小
C.弹簧的弹性势能变化了mgh
D.弹簧的弹性势能最大时圆环动能最大
解析 圆环受到重力、支持力和弹簧的弹力作用,支持力不做功,故环的机械能与弹簧的弹性势能总和保持不变,故全过程弹簧的弹性势能变化量等于环的机械能变化量,C正确,圆环的机械能不守恒,A错误.弹簧垂直杆时弹簧的压缩量最大,此时圆环有向下的速度,故此时弹性势能比末状态的弹性势能小,即:最终状态弹簧被拉长,且弹性势能达到最大,此时圆环的动能为零,所以弹性势能是先增加后减小最后又增大,B、D错误.
答案 C
点评:此类问题应注意物体与弹簧组成的系统机械能守恒,不同的过程中弹性势能的变化一般是不相同的.
展开阅读全文