资源描述
二次函数与一元二次方程的综合题
交点问题
1.已知关于x的一元二次方程2x2+4x+k-1=0有实数根,k为正整数.
(1)求k的值;
(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k-1的图象向下平移8个单位长度,求平移后的图象的解析式;
(3)在(2)的条件下,将平移后的二次函数的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线(b<k)与此图象有两个公共点时,b的取值范围.
2. 已知二次函数
在和时的函数值相等。
(1) 求二次函数的解析式;
(2) 若一次函数的图象与二次函数的图象都经过点,求和的值;
(3) 设二次函数的图象与轴交于点(点在点的左侧),将二次函数的图象在点间的部分(含点和点)向左平移个单位后得到的图象记为,同时将(2)中得到的直线向上平移个单位。请结合图象回答:当平移后的直线与图象有公共点时,的取值范围。
3.已知抛物线 与x轴交于A、B两点.
(1)求m的取值范围;
(2)若m>1, 且点A在点B的左侧,OA : OB=1 : 3, 试确定抛物线的解析式;
(3)设(2)中抛物线与y轴的交点为C,过点C作直线l //x轴, 将抛物线在y轴左侧的部分沿直线 l翻折, 抛物线的其余部分保持不变,得到一个新图象. 请你结合新图象回答: 当直线与新图象只有一个公共点P(x0, y0)且 y0£7时, 求b的取值范围.
4. 已知关于的方程.
(1) 若方程有两个不相等的实数根,求的取值范围;
(2) 若正整数满足,设二次函数的图象与 轴交于两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象恰好有三个公共点时,求出的值(只需要求出两个满足题意的k值即可).
5.已知二次函数.
(1)当c=-3时,求出该二次函数的图象与x轴的交点坐标;
(2)若-2<x<1时,该二次函数的图象与x轴有且只有一个交点,求c的取值范围.
6.已知关于x的一元二次方程.
(1)求证:无论m取何实数时,原方程总有两个实数根;
(2)若原方程的两个实数根一个大于2,另一个小于7,求m的取值范围;
(3)抛物线与x轴交于点A、B,与y轴交于点C,当m取(2)中符合题意的最小整数时,将此抛物线向上平移n个单位,使平移后得到的抛物线顶点落在△ABC的内部(不包括△ABC的边界),求n的取值范围(直接写出答案即可).
7.在平面直角坐标系中,二次函数的图象与轴交于、两点(点在点左侧),与轴交于点.
⑴ 求点的坐标;
⑵ 当时,求的值;
⑶ 已知一次函数,点是轴上的一个动点,在⑵的条件下,过点垂直于 轴的直线交这个一次函数的图象于点,交二次函数的图象于点。若只有当时,点位于点的上方,求这个一次函数的解析式。
展开阅读全文