资源描述
全品中考网
22.2降次——解一元二次方程(配方法)
教学任务分析
教学目标
知识技能
探索利用配方法解一元二次方程的一般步骤;能够利用配方法解一元二次方程.
数学思考
在探索配方法时,使学生感受前后知识的联系,体会配方的过程以及方法.
解决问题
渗透配方法是解决某些代数问题的一个很重要的方法.
情感态度
继续体会由未知向已知转化的思想方法.
重点
用配方法解一元二次方程.
难点
正确理解把形的代数式配成完全平方式.
教学流程安排
活动流程图
活动内容和目的
活动1 做一做
活动2 列方程解决实际问题
活动3 问题引申、巩固练习
活动4 小结,布置作业
创设问题情境,激发学生兴趣,引出本节内容.
主体探究、归纳配方法一般过程.
应用提高、拓展创新,培养学生应用意识.
归纳总结、巩固新知.
教学过程设计
问题与情境
师生行为
「活动1」 做一做
1.一桶某种油漆可刷的面积为1 500 dm2,李林用这桶油漆恰好刷完10个同样的正方体的盒子的全部外表,你能算出盒子的棱长吗?
(课件:盒子的棱长)
学生独立分析题意,发现若设正方体的棱长为x dm,则一个正方体的表面积为6x2 dm2,根据一桶油漆可以刷的面积,列出方程.在学生列出方程后,让学生讨论方程的解法,由于所列出的方程形式比较简单,可以运用平方根的定义(即开平方法)来求出方程的解.让学生感受开平方可以解一些简单的一元二次方程.
2.对照上述解方程的过程,你能解下列方程吗?从中你能得到什么结论?
(1);
(2).
学生活动设计:
学生独立分析问题,在必要的时候进行讨论.经过分析发现(1)和问题1中的方程形式类似,可以利用平方根的定义直接得到,于是得到.
对于(2),发现方程左边是一个完全平方式,可以化为(1)的形式,然后利用(1)的方法解决.
教师活动设计:鼓励学生独立解决问题,在解决问题的过程中体会解简单的一元二次方程的思想“降次”——把二次降为一次,进而解一元一次方程即可.
引导学生归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.
即,如果方程能化成或的形式,那么可得或.
「活动2」
1.要使一块矩形场地的长比宽多6 cm,并且面积为16 cm2,场地的长和宽分别是多少?
学生活动设计:
学生通过思考,自己列出方程,然后讨论解方程的方法.考虑设场地的宽为x m,则长为(x+6)m,根据矩形面积为16 cm2,得到方程x(x+6)=16,整理得到x2+6x-16=0,对于如何解方程x2+6x-16=0可以进行讨论,根据问题1和问题2以及归纳的经验可以想到,只要把上述方程左边化成一个完全平方式的形式,问题就解决了,于是想到把方程左边进行配方,对于代数式x2+6x只需要再加上9就是完全平方式(x+3)2,因此方程x2+6x=16可以化为
x2+6x+9=16+9, 即(x+3)2=25,问题解决.
2.利用配方法解下列方程,你能从中得到在配方时具有的规律吗?(课件:配方)
(1)x2-8x + 1 = 0;
(2);
(3).
教师活动设计:
在学生讨论方程x2+6x=16的解法时,注意引导学生根据降次的思想,利用配方的方法解决问题,进而体会配方法解方程的一般步骤.
归纳:通过配成完全平方式的形式解一元二次方程的方法,叫作配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.
学生活动设计:
学生首先独立思考,自主探索,然后交流配方时的规律.经过分析(1)中经过移项可以化为,为了使方程的左边变为完全平方式,可以在方程两边同时加上42,得到,得到(x-4)2=15;
(2)中二次项系数不是1,此时可以首先把方程的两边同时除以二次项系数2,然后再进行配方,即,方程两边都加上,方程可以化为;
(3)按照(2)的方式进行处理.
教师活动设计:在学生解决问题的过程中,适时让学生讨论解决遇到的问题(比如遇到二次项系数不是1的情况该如何处理),然后让学生分析利用配方法解方程时应该遵循的步骤:
(1)把方程化为一般形式;
(2)把方程的常数项通过移项移到方程的右边;
(3)方程两边同时除以二次项系数a;
(4)方程两边同时加上一次项系数一半的平方;
(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.
「活动3」
绿苑小区住宅设计,准备在每两幢楼房之间,开辟面积为900平方米的一块长方形绿地,并且长比宽多10米,那么绿地的长应是多少米?
师生活动设计:
学生在独立思考的基础上解决问题,在必要时教师进行适当引导,遇到问题时可以让学生讨论解决.
〔解答〕设绿地的宽是x米,则长是(x+10)米,根据题意得:x(x+10)=900.
整理得:,
配方得:.
解得:.
由于绿地的边长不可能是负数,因此绿地的宽只能是米,于是绿地的长是米.
「活动4」
归纳总结、布置作业
1. 本节你遇到了什么问题?
2. 在解决问题的过程中你采取了什么方法?
作业:习题22.2第1~3题.
学生回顾思考,并作答.
010-58818067 58818068 全品中考网邮箱:canpointzk@
第 4 页 共 4 页
展开阅读全文