资源描述
《线性代数》根据“卓越工程师教育培养计划”的基本要求,突出基本概念、基本理论、基本技能,注重培养学生数学素质。教材在满足教学要求的前提下,适当降低理论推导的要求,但重视阐明基本理论的脉络。习题配置中也突出基本题、概念题和与工程相关的实际应用题等。
由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。如果所研究的关联性是线性的,那么称这个问题为线性问题。历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。
矩阵和行列式 行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。行列式是由莱布尼茨和日本数学家关孝和发明的。 1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。
1750 年,瑞士数学家克莱姆 (G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学家贝祖 (E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。 总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。
在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙 (A-T.Vandermonde,1735-1796) 。范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。就对行列式本身这一点来说,他是这门理论的奠基人。 1772 年,拉普拉斯在一篇论文中证明了范德蒙提出的一些规则,推广了他的展开行列式的方法。
继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。 1815 年,柯西在一篇论文中给出了行列式的第一个系统的、几乎是近代的处理。其中主要结果之一是行列式的乘法定理。另外,他第一个把行列式的元素排成方阵,采用双足标记法;引进了行列式特征方程的术语;给出了相似行列式概念;改进了拉普拉斯的行列式展开定理并给出了一个证明等。
19 世纪的半个多世纪中,对行列式理论研究始终不渝的作者之一是詹姆士•西尔维斯特 (J.Sylvester,1814-1894) 。他是一个活泼、敏感、兴奋、热情,甚至容易激动的人,然而由于是犹太人的缘故,他受到剑桥大学的不平等对待。西尔维斯特用火一般的热情介绍他的学术思想,他的重要成就之一是改进了从一个 次和一个 次的多项式中消去 x 的方法,他称之为配析法,并给出形成的行列式为零时这两个多项式方程有公共根充分必要条件这一结果,但没有给出证明。
继柯西之后,在行列式理论方面最多产的人就是德国数学家雅可比 (J.Jacobi,1804-1851) ,他引进了函数行列式,即“雅可比行列式”,指出函数行列式在多重积分的变量替换中的作用,给出了函数行列式的导数公式。雅可比的著名论文《论行列式的形成和性质》标志着行列式系统理论的建成。由于行列式在数学分析、几何学、线性方程组理论、二次型理论等多方面的应用,促使行列式理论自身在19世纪也得到了很大发展。整个19 世纪都有行列式的新结果。除了一般行列式的大量定理之外,还有许多有关特殊行列式的其他定理都相继得到。
矩 阵 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。
英国数学家凯莱 (A.Cayley,1821-1895) 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。 1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论。文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性。另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果。凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数学论文。
1855 年,埃米特 (C.Hermite,1822-1901) 证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来 ,克莱伯施 (A.Clebsch,1831-1872) 、布克海姆 (A.Buchheim) 等证明了对称矩阵的特征根性质。泰伯 (H.Taber) 引入矩阵的迹的概念并给出了一些有关的结论。
在矩阵论的发展史上,弗罗伯纽斯 (G.Frobenius,1849-1917) 的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。 1854 年,约当研究了矩阵化为标准型的问题。 1892 年,梅茨勒 (H.Metzler) 引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。傅立叶、西尔和庞加莱的著作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的。
矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。矩阵及其理论现已广泛地应用于现代科技的各个领域。
线性方程组 线性方程组的解法,早在中国古代的数学著作《九章算术 方程》章中已作了比较完整的论述。其中所述方法实质上相当于现代的对方程组的增广矩阵施行初等行变换从而消去未知量的方法,即高斯消元法。在西方,线性方程组的研究是在 17 世纪后期由莱布尼茨开创的。他曾研究含两个未知量的三个线性方程组组成的方程组。麦克劳林在 18 世纪上半叶研究了具有二、三、四个未知量的线性方程组,得到了现在称为克莱姆法则的结果。克莱姆不久也发表了这个法则。 18世纪下半叶,法国数学家贝祖对线性方程组理论进行了一系列研究,证明了 元齐次线性方程组有非零解的条件是系数行列式等于零。
19 世纪,英国数学家史密斯 (H.Smith) 和道奇森 (C-L.Dodgson) 继续研究线性方程组理论,前者引进了方程组的增广矩阵和非增广矩阵的概念,后者证明了 个未知数 个方程的方程组相容的充要条件是系数矩阵和增广矩阵的秩相同。这正是现代方程组理论中的重要结果之一。
大量的科学技术问题,最终往往归结为解线性方程组。因此在线性方程组的数值解法得到发展的同时,线性方程组解的结构等理论性工作也取得了令人满意的进展。现在,线性方程组的数值解法在计算数学中占有重要地位。
二次型 二次型也称为“二次形式”,数域 ?上的 ?元二次齐次多项式称为数域 ?上的 ?元二次型。二次型是我们线性代数教材的后继内容,为了我们后面的学习,这里对于二次型的发展历史我们也作简单介绍。二次型的系统研究是从 18 世纪开始的,它起源于对二次曲线和二次曲面的分类问题的讨论。将二次曲线和二次曲面的方程变形,选有主轴方向的轴作为坐标轴以简化方程的形状,这个问题是在 18 世纪引进的。柯西在其著作中给出结论:当方程是标准型时,二次曲面用二次项的符号来进行分类。然而,那时并不太清楚,在化简成标准型时,为何总是得到同样数目的正项和负项。西尔维斯特回答了这个问题,他给出了 个变数的二次型的惯性定律,但没有证明。这个定律后被雅可比重新发现和证明。 1801 年,高斯在《算术研究》中引进了二次型的正定、负定、半正定和半负定等术语。
二次型化简的进一步研究涉及二次型或行列式的特征方程的概念。特征方程的概念隐含地出现在欧拉的著作中,拉格朗日在其关于线性微分方程组的著作中首先明确地给出了这个概念。而三个变数的二次型的特征值的实性则是由阿歇特 (J-N.P.Hachette) 、蒙日和泊松 (S.D.Poisson,1781-1840) 建立的。
柯西在别人著作的基础上,着手研究化简变数的二次型问题,并证明了特征方程在直角坐标系的任何变换下不变性。后来,他又证明了 个变数的两个二次型能用同一个线性变换同时化成平方和。
1851 年,西尔维斯特在研究二次曲线和二次曲面的切触和相交时需要考虑这种二次曲线和二次曲面束的分类。在他的分类方法中他引进了初等因子和不变因子的概念,但他没有证明“不变因子组成两个二次型的不变量的完全集”这一结论。
1858 年,魏尔斯特拉斯对同时化两个二次型成平方和给出了一个一般的方法,并证明,如果二次型之一是正定的,那么即使某些特征根相等,这个化简也是可能的。魏尔斯特拉斯比较系统的完成了二次型的理论并将其推广到双线性型。
从解方程到群论
求根问题是方程理论的一个中心课题。 16 世纪,数学家们解决了三、四次方程的求根公式,对于更高次方程的求根公式是否存在,成为当时的数学家们探讨的又一个问题。这个问题花费了不少数学家们大量的时间和精力。经历了屡次失败,但总是摆脱不了困境。
到了 18 世纪下半叶,拉格朗日认真总结分析了前人失败的经验,深入研究了高次方程的根与置换之间的关系,提出了预解式概念,并预见到预解式和各根在排列置换下的形式不变性有关。但他最终没能解决高次方程问题。拉格朗日的弟子鲁菲尼 (Ruffini,1765-1862) 也做了许多努力,但都以失败告终。高次方程的根式解的讨论,在挪威杰出数学家阿贝尔那里取得了很大进展。阿贝尔 (N.K.Abel,1802-1829) 只活了 27 岁,他一生贫病交加,但却留下了许多创造性工作。 1824 年,阿贝尔证明了次数大于四次的一般代数方程不可能有根式解。但问题仍没有彻底解决,因为有些特殊方程可以用根式求解。因此,高于四次的代数方程何时没有根式解,是需要进一步解决的问题。这一问题由法国数学家伽罗瓦全面透彻地给予解决。
伽罗瓦 (E.Galois,1811-1832) 仔细研究了拉格朗日和阿贝尔的著作,建立了方程的根的“容许”置换,提出了置换群的概念,得到了代数方程用根式解的充分必要条件是置换群的自同构群可解。从这种意义上,我们说伽罗瓦是群论的创立者。伽罗瓦出身于巴黎附近一个富裕的家庭,幼时受到良好的家庭教育,只可惜,这位天才的数学家英年早逝, 1832 年 5 月,由于政治和爱情的纠葛,在一次决斗中被打死,年仅 21 岁。 .
置换群的概念和结论是最终产生抽象群的第一个主要来源。抽象群产生的第二个主要来源则是戴德金(R.Dedekind,1831-1916) 和克罗内克 (L.Kronecker,1823-1891) 的有限群及有限交换群的抽象定义以及凯莱 (A.Kayley,1821-1895) 关于有限抽象群的研究工作。另外,克莱因 (F.Clein,1849-1925) 和庞加莱 (J-H.Poincare,1854-1912) 给出了无限变换群和其他类型的无限群, 19 世纪 70 年代,李 (M.S.Lie,1842-1899) 开始研究连续变换群,并建立了连续群的一般理论,这些工作构成抽象群论的第三个主要来源。
1882-1883 年,迪克 (W.vondyck,1856-1934) 的论文把上述三个主要来源的工作纳入抽象群的概念之中,建立了(抽象)群的定义。到 19 世纪 80 年代,数学家们终于成功地概括出抽象群论的公理体系。
20 世纪 80 年代,群的概念已经普遍地被认为是数学及其许多应用中最基本的概念之一。它不但渗透到诸如几何学、代数拓扑学、函数论、泛函分析及其他许多数学分支中而起着重要的作用,还形成了一些新学科如拓扑群、李群、代数群等,它们还具有与群结构相联系的其他结构,如拓扑、解析流形、代数簇等,并在结晶学、理论物理、量子化学以及编码学、自动机理论等方面,都有重要作用。
线性代数理论是计算技术的基础,同系统工程、优化理论及稳定性理论等有着密切联系。由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决,于是作为处理离散问题的线性代数成为从事科学研究和工程设计的科技人员必备的数学基础,是高等院校理工类专业必修的一门数学基础课。
2010年我校施行“卓越工程师教育培养计划”以来,以教育部倡导的“按通用标准和行业标准培养工程人才、强化培养学生的工程能力和创新能力”为宗旨,大力推行教育教学改革,本书在此基础上孕育而生。在编写过程中,编者根据“卓越计划”的基本要求,教学内容突出基本概念、基本理论和基本技能,注重培养学生的数学素质,着力改变以往工科线性代数教学中重运算技巧、轻数学思想的倾向,强调数学的基本思想、基本方法(如强调基本概念及各个概念之间的固有联系,重视阐明基本理论的脉络等),注意对基本概念和定理的几何背景与实际应用背景的介绍,淡化某些特殊技巧的处理,充分利用计算机技术和数学软件解决问题。在习题配置中也突出基本题、概念题和与工程相关的实际应用题等。
根据实践教学和实际应用中的特点,本书的内容也与以往教材有所变化。考虑到工程实际中碰到的具体问题都是求解一个阶数确定的行列式,在教材编写以及教学过程中适当降低行列式计算的教学要求,不必要也不应该把精力放在牵涉到很高计算技巧和大量复杂计算中,而应该让学生掌握由具体到一般、由低阶到高阶的数学思想方法; 其次,由于矩阵在实际工程中几乎是无处不在、无处不用的数学工具,它是将实际问题与数学理论联系在一起的桥梁,而学生往往在理论与实际相结合方面有所欠缺,因此我们在教材中适量增加矩阵的教学内容,提高矩阵的教学要求,使学生对矩阵的重要性及应用性有充分的认识,提高学生的数学素养和培养学生应用数学知识分析问题、解决问题的能力。另外,注意培养学生利用计算机解决实际问题的能力,将线性代数应用和计算中经常使用的软件,如Mathematica、MATLAB、Maple等的使用说明和经常使用的命令,对应各章节的教学内容编入教材附录中,支持和鼓励学生上机,利用数学软件来解决线性代数课程中遇到的各类计算,并引导学生通过自己编程来解决一些简单的实际问题。
本书由吴隋超策划、组织编写,并负责统稿、定稿。全书共5章,第1章和第2章前四节由吴隋超编写,2.5、2.6节和第3章由沈军编写,第4章和第5章由俞卫琴编写。
在本书的编写过程中得到了上海工程技术大学教务处、基础教学学院分管领导和数学教学部全体教师的关心和大力支持,张子厚教授就本书的编写提出了指导性的意见,在此表示衷心的感谢。
本书虽经多次讨论,反复修正,但限于编者水平,加之教学改革中的一些问题有待进一步探索,缺点和疏漏之处在所难免,恳请使用本书的老师和同学批评指正。
线性代数有什么用?这是每一个圈养在象牙塔里,在灌输式教学模式下的“被学习”的学生刚刚开始思考时的第一个问题。我稍微仔细的整理了一下学习线代的理由,竟然也罗列了不少,不知道能不能说服你:
1、 如果你想顺利地拿到学位,线性代数的学分对你有帮助;
2、 如果你想继续深造,考研,必须学好线代。因为它是必考的数学科目,也是研究生科目《矩阵论》、《泛函分析》的基础。例如,泛函分析的起点就是无穷多个未知量的无穷多线性方程组理论。
3、 如果你想提高自己的科研能力,不被现代科技发展潮流所抛弃,也必须学好,因为瑞典的L.戈丁说过,没有掌握线代的人简直就是文盲。他在自己的数学名著《数学概观》中说:
要是没有线性代数,任何数学和初等教程都讲不下去。按照现行的国际标准,线性代数是通过公理化来表述的。它是第二代数学模型,其根源来自于欧几里得几何、解析几何以及线性方程组理论。…,如果不熟悉线性代数的概念,像线性性质、向量、线性空间、矩阵等等,要去学习自然科学,现在看来就和文盲差不多,甚至可能学习社会科学也是如此。
4、 如果毕业后想找个好工作,也必须学好线代:
l 想搞数学,当个数学家(我靠,这个还需要列出来,谁不知道线代是数学)。恭喜你,你的职业未来将是最光明的。如果到美国打工的话你可以找到最好的职业(参考本节后附的一份小资料)。
l 想搞电子工程,好,电路分析、线性信号系统分析、数字滤波器分析设计等需要线代,因为线代就是研究线性网络的主要工具;进行IC集成电路设计时,对付数百万个集体管的仿真软件就需要依赖线性方程组的方法;想搞光电及射频工程,好,电磁场、光波导分析都是向量场的分析,比如光调制器分析研制需要张量矩阵,手机信号处理等等也离不开矩阵运算。
l 想搞软件工程,好,3D游戏的数学基础就是以图形的矩阵运算为基础;当然,如果你只想玩3D游戏可以不必掌握线代;想搞图像处理,大量的图像数据处理更离不开矩阵这个强大的工具,《阿凡达》中大量的后期电脑制作没有线代的数学工具简直难以想象。
l 想搞经济研究。好,知道列昂惕夫(Wassily Leontief)吗?哈佛大学教授,1949年用计算机计算出了由美国统计局的25万条经济数据所组成的42个未知数的42个方程的方程组,他打开了研究经济数学模型的新时代的大门。这些模型通常都是线性的,也就是说,它们是用线性方程组来描述的,被称为列昂惕夫“投入-产出”模型。列昂惕夫因此获得了1973年的诺贝尔经济学奖。
l 相当领导,好,要会运筹学,运筹学的一个重要议题是线性规划。许多重要的管理决策是在线性规划模型的基础上做出的。线性规划的知识就是线代的知识啊。比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;又如,你作为一个大商场的老板,线性规划可以帮助你合理的安排各种商品的进货,以达到最大利润。
l 对于其他工程领域,没有用不上线代的地方。如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;飞行器设计,就要研究飞机表面的气流的过程包含反复求解大型的线性方程组,在这个求解的过程中,有两个矩阵运算的技巧:对稀疏矩阵进行分块处理和进行LU分解;作餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;知道有限元方法吗?这个工程分析中十分有效的有限元方法,其基础就是求解线性方程组。知道马尔科夫链吗?这个“链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列,看看,矩阵、向量又出现了。
l 另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解;二次型常常出现在线性代数在工程(标准设计及优化)和信号处理(输出的噪声功率)的应用中,他们也常常出现在物理学(例如势能和动能)、微分几何(例如曲面的法曲率)、经济学(例如效用函数)和统计学(例如置信椭圆体)中,某些这类应用实例的数学背景很容易转化为对对称矩阵的研究。
嘿嘿(脸红),说实在的,我也没有足够经验讲清楚线代在各个工程领域中的应用,只能大概人云亦云地讲述以上线代的一些基本应用。因为你如果要真正的讲清楚线代的一个应用,就必须充分了解所要应用的领域内的知识,最好有实际的工程应用的经验在里面;况且线性代数在各个工程领域中的应用真是太多了,要知道当今成为一个工程通才只是一个传说。
总结一下,线性代数的应用领域几乎可以涵盖所有的工程技术领域。如果想知道更详细的应用材料,建议看一下《线性代数及应用》,这是美国David C. Lay 教授写的迄今最现代的流行教材。国内的教材可以看看《线性代数实践及MATLAB入门》,这是西电科大陈怀琛教授写的最实用的新教材。
展开阅读全文