资源描述
中国教育培训领军品牌
环球雅思学科教师辅导教案
辅导科目: 数 学 学员姓名:许博皓 年级:初 二
学科教师: 卫向丰 课 时 数:3 第__3__ 次 课
授课主题
动点问题专题复习
教学目标
1.研究基本图形,引导学生探索在运动过程中形成的特殊图形与其他图形的本质区别;步步引入,研究起点、终点和状态转折点,确定时间范围,挖掘解决动点问题的基本方法。
2.动点以其知识点多、题型复杂成为中考命题组提升难度,拉开差距,选拔考生的一个“热”点,常出现于中考数学压轴题或者倒数第二道题。
3.点在动,思维跟着点转个不停,从动态变化中找到解题钥匙.从经典题目中挖掘出解决动点问题的基本方法,克服中考压轴动点问题这一难点。
授课日期及时段
2012年12月25日
10:00-12:00
教学内容
.如图,在矩形ABCD中,p是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q
(1)求证:OP=OQ
(2)若AD=8cm,AB=6cm,点P从点A出发,以1cm/s的速度向D运动(不与D重合)。设点P运动的时间为ts,请用t表示PD的长,并求当t为何值时,四边形PBQD是菱形
总结:
先用解析式表示出线段,再构造出直角三角形,利用勾股定理找出等量关系,最后解出所求时间及线段。
其中,还考察了运动过程中,形成特殊四边形,做题时我们还要熟悉和牢记特殊图形的基本性质。
解(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠PDO=∠QBO,又OB=OD,∠POD=∠QOB,
∴△POD≌△QOB,
∴OP=OQ;
(2)解:PD=8-t,
∵四边形PBQD是菱形,
∴PD=BP=8-t,
∵四边形ABCD是矩形,
∴∠A=90°,
在Rt△ABP中,由勾股定理得:AB^2+AP^2=BP^2,
即6^2+t^2=(8-t)^2,
解得:t=7/4,
即运动时间为7/4秒时,四边形PBQD是菱形.
. 梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从点A开始,沿AD边,以1厘米/秒的速度向点D运动;动点Q从点C开始,沿CB边,以3厘米/秒的速度向B点运动。
已知P、Q两点分别从A、C同时出发,,当其中一点到达端点时,另一点也随之停止运动。假设运动时间为t秒,问:
(1)t为何值时,四边形PQCD是平行四边形?
(2)在某个时刻,四边形PQCD可能是菱形吗?为什么?
(3)t为何值时,四边形PQCD是直角梯形?
(4)t为何值时,四边形PQCD是等腰梯形?
解(1)PD=QC
24-t=3t则t=6
(2)当t=6时,PD=18
总结:
在运动过程中形成的特殊图形与其他图形的本质区别;找出线段关系,用解析式表示出线段,最后解出。步步引入,研究起点、终点和状态转折点,确定时间范围,挖掘解决动点问题的基本方法。
DC=2<17
(3) PD=QC-2
24-t=3t-2
t=6.5
(4) PD=QC-4
t=7
. 如右图,在矩形ABCD中,AB=20cm,BC=4cm,点
P从A开始沿折线A—B—C—D以4cm/s的速度运动,点Q从C
开始沿CD边1cm/s的速度移动,如果点P、Q分别从A、C同时
出发,当其中一点到达点D时,另一点也随之停止运动,设运动
时间为t(s),t为何值时,四边形APQD也为矩形?
解
总结
(2010)(10分)
(1)操作发现
如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在举行ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.
(2)问题解决
保持(1)中的条件不变,若DC=2DF,求的值;
(3)类比探求
保持(1)中条件不变,若DC=nDF,求的值.
(2012)(10分)类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到。如下是一个案例,请补充完整。
原题:如图1,在平行四边形ABCD中,点E是BC边的中点,点F是线段AE上的一点,BF的延长线交射线CD于点G。若=3,求的值。
(1) 尝试探究
在图一中,过点E作EH∥AB交BG于点H ,则AB和EH的数量关系是 ,CG和EH的数量关系是 ,的值是 。
(2) 类比延伸
在原题条件下,若=m(m>0),则的值是 (用含m的代数式表示)。试写出解答过程。
(3)拓展迁移
如图二,梯形ABCD中,DC∥AB,点E是BC的延长线上的一点,AE和BD相交于点F。若=a,=b(a>0,b>0),则的值是 (用含a、b的代数式表示)
1. 如图,在等腰梯形中,∥,,AB=12 cm,CD=6cm , 点从开始沿边向以每秒3cm的速度移动,点从开始沿CD边向D以每秒1cm的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达终点时运动停止。设运动时间为t秒。
(1)求证:当t=时,四边形是平行四边形;
A
B
C
D
Q
P
(2)PQ是否可能平分对角线BD?若能,求出当t为何值时PQ平分BD;若不能,请说明理由;
(3)若△DPQ是以PQ为腰的等腰三角形,求t的值。
2. 如图所示,△ABC中,点O是AC边上的一个动点,过O作直线MN//BC,设MN交的平分线于点E,交的外角平分线于F。
(1)求让:;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论。
(3)若AC边上存在点O,使四边形AECF是正方形,且=,求的大小。
3. 如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,求重叠部分⊿AFC的面积.
4. 如图所示,有四个动点P、Q、E、F分别从正方形ABCD的四个顶点出发,沿着AB、BC、CD、DA以同样的速度向B、C、D、A各点移动。
(1)试判断四边形PQEF是正方形并证明。
(2)PE是否总过某一定点,并说明理由。
(3)四边形PQEF的顶点位于何处时,
其面积最小,最大?各是多少?
5.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D 出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
(1)求NC,MC的长(用t的代数式表示);
(2)当t为何值时,四边形PCDQ构成平行四边形?
(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由; (4)探究:t为何值时,△PMC为等腰三角形?
解(1)NC=t+1,PN=|5-(t+1)-t|=|4-2t|
(2)若t时刻满足条件,则满足矩形ABNQ面积=3×(3-t))=1/2*(3+4)*3/2=21/4,则t=5/4
此时AB+BN+QA=3+2(3-t)=13/2,而梯形总周长为10+10^0.5,不满足条件。故不存在这样(1)
NC=t+1,PN=|5-(t+1)-t|=|4-2t|
(2)
若t时刻满足条件,则满足矩形ABNQ面积=3×(3-t))=1/2*(3+4)*3/2=21/4,则t=5/4
此时AB+BN+QA=3+2(3-t)=13/2,而梯形总周长为10+10^0.5,不满足条件。故不存在这样的t。t。
5、(山东青岛课改卷 )如图①,有两个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,∠C=90°,EG=4cm,∠EGF=90°,O 是△EFG斜边上的中点.
如图②,若整个△EFG从图①的位置出发,以1cm/s 的速度沿射线AB方向平移,在△EFG 平移的同时,点P从△EFG的顶点G出发,以1cm/s 的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,△EFG也随之停止平移.设运动时间为x(s),FG的延长线交 AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况).
(1)当x为何值时,OP∥AC ?
(2)求y与x 之间的函数关系式,并确定自变量x的取值范围.
(3)是否存在某一时刻,使四边形OAHP面积与△ABC面积的比为13∶24?若存在,求出x的值;若不存在,说明理由.
(参考数据:1142 =12996,1152 =13225,1162 =13456
或4.42 =19.36,4.52 =20.25,4.62 =21.16)
11、已知:如图,△ABC是边长3cm的等边三角形,动点
P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移
动,它们的速度都是1cm/s,当点P到达点B时,P、Q两
点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的
关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(2005•宁德)如图,已知直角梯形ABCD中,AD∥BC,ÐB=90°,AB=12cm,BC=8cm,DC=13cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为ym2.
(1)求AD的长及t的取值范围;
(2)当1.5≤t≤t0(t0为(1)中t的最大值)时,求y关于t的函数关系式;
(3)请具体描述:在动点P、Q的运动过程中,△PQB的面积随着t的变化而变化的规律.
(1)在梯形ABCD中,AD∥BC、ÐB=90°过D作DE⊥BC于E点,如图所示∴AB∥DE ∴四边形ABED为矩形, ∴DE=AB=12cm
在Rt△DEC中,DE=12cm,DC=13cm
∴EC=5cm
∴AD=BE=BC-=EC=3cm(2分)
点P从出发到点C共需=8(秒),
点Q从出发到点C共需=8秒(3分),
又∵t≥0,∴0≤t≤8(4分);
(2)当t=1.5(秒)时,AP=3,即P运动到D点(5分)
∴当1.5≤t≤8时,点P在DC边上
∴PC=16-2t
过点P作PM⊥BC于M,如图所示∴PM∥DE
∴=即= ∴PM=(16-2t)(7分)
又∵BQ=t ∴y=BQ•PM=t•(16-2t)=-t2+t(3分),
(3)当0≤t≤1.5时,△PQB的面积随着t的增大而增大;
当1.5<t≤4时,△PQB的面积随着t的增大而(继续)增大;
当4<t≤8时,△PQB的面积随着t的增大而减小.(12分)
注:①上述不等式中,“1.5<t≤4”、“4<t≤8”写成“1.5≤t≤4”、“4≤t≤8”也得分.
②若学生答:当点P在AD上运动时,△PQB的面积先随着t的增大而增大,当点P在DC上运动时,△PQB的面积先随着t的增大而(继续)增大,之后又随着t的增大而减小.给(2分)
③若学生答:△PQB的面积先随着t的增大而减小给(1分)
8
展开阅读全文