资源描述
任意角的三角函数·典型例题精析
例1 下列说法中,正确的是
[ ]
A.第一象限的角是锐角
B.锐角是第一象限的角
C.小于90°的角是锐角
D.0°到90°的角是第一象限的角
【分析】本题涉及了几个基本概念,即“第一象限的角”、“锐角”、“小于90°的角”和“0°到90°的角”.在角的概念推广以后,这些概念容易混淆.因此,弄清楚这些概念及它们之间的区别,是正确解答本题的关键.
【解】第一象限的角可表示为{θ|k·360°<θ<90°+k·360°,k∈Z},锐角可表示为{θ|0°<θ<90°},小于90°的角为{θ|θ<90°},0°到90°的角为{θ|0°≤θ<90°}.因此,锐角的集合是第一象限角的集合当k=0时的子集,故(A),(C),(D)均不正确,应选(B).
(90°-α)分别是第几象限角?
【分析】 由sinα·cosα<0,所以α在二、四象限;由sinα·tanα<0,所以α在二、三象限.因此α为第二象限的角,然后由角α的
【解】(1)由题设可知α是第二象限的角,即
90°+k·360°<α<180°+k·360°(k∈Z),
的角.
(2)因为 180°+2k·360°<2α<360°+2k·360°(k∈Z),所以2α是第三、第四象限角或终边在y轴非正半轴上的角.
(3)解法一:因为 90°+k·360°<α<180°+k·360°(k∈Z),
所以 -180°-k·360°<-α<-90°-k·360°(k∈Z).
故 -90°-k·360°<90°-α<-k·360°(k∈Z).
因此90°-α是第四象限的角.
解法二:因为角α的终边在第二象限,所以-α的终边在第三象限.
将-α的终边按逆时针旋转90°,可知90°-α的终边在第四象限内.
【说明】①在确定形如α+k·180°角的象限时,一般要分k为偶数或奇数讨论;②确定象限时,α+kπ与α-kπ是等效的
例5 一个扇形的周长为l,求扇形的半径、圆心角各取何值时,此扇形的面积最大.
【分析】解答本题,需灵活运用弧度制下的求弧长和求面积公式.本题是求扇形面积的最大值,因此应想法写出面积S以半径r为自变量的函数表达式,再用配方法求出半径r和已知周长l的关系.
【解】设扇形面积为S,半径为r,圆心角为α,则扇形弧长为l-2r.所以
【说明】在学习弧度制以后,用弧度制表示的求弧长与扇形面积公
形的问题中,中心角用弧度表示较方便.本例实际上推导出一个重要公式,即当扇形周长为定值时,怎样选取中心角可使面积得到最大值.本题也可将面积表示为α的函数式,用判别式来解.
.
例 4 (1)已知角α终边上一点P(3k,-4k)(k<0),求sinα,cosα,tanα的值;
【分析】利用三角函数的定义进行三角式的求值、化简和证明,是
三两个象限,因此必须分两种情况讨论.
【解】(1)因为x=3k,y=-4k,
例3 已知集合E={θ|cosθ<sinθ,0≤θ≤2π},F={θ|tanθ<sinθ},那么E∩F是区间
[ ]
【分析】 解答本题必须熟练掌握各个象限三角函数的符号、各个象限的三角函数值随角的变化而递增或递减的变化情况.可由三角函数的性质判断,也可由三角函数线判断.用代入特殊值排除错误答案的方法解答本题也比较容易.
【解法一】 由正、余弦函数的性质,
【解法二】由单位圆中的正弦线和正切线容易看出,对于二、四象限的角,AT<MP,即tanα<sinθ,由正弦线和余弦线可看出,当
应选(A).
可排除(C),(D),得(A).
【说明】本题解法很多,用三角函数线还可以有以下解法:因为第一、三象限均有AT>MP,即tanθ>sinθ,所以(B),(C),(D)均不成立.用排除法也有些别的方法,可自己练习.
【分析】第(1)小题因α在第二象限,因此只有一组解;第(2)小题给了正弦函数值,但没有确定角α的象限,因此有两组解;第(3)小题角α可能在四个象限或是轴线角,因此需分两种情况讨论.
【解】
(3)因为sinα=m(|m|<1),所以α可能在四个象限或α的终边在x轴上.
1.已知某角的一个三角函数值,求该角的其他三角函数值.
解 ∵sinα<0
∴角α在第三或第四象限(不可能在y轴的负半轴上)
(2)若α在第四象限,则
例.已知tanα=2,则
(1)=________;
(2)=________;
(3)4sin2α-3sinαcosα-5cos2α=________.
解析:(1)注意到分式的分子与分母均是关于sinα、cosα的一次齐次式,将分子、分母同除以cosα(∵cosα≠0),然后整体代入tanα=2的值.
===-1.
(2)注意到分子、分母都是关于sinα、cosα的二次齐次式,
∵cos2α≠0,分子、分母同除以cos2α,有
===.∴应填.
(3)要注意到sin2α+cos2α=1,
4sin2α-3sinαcosα-5cos2α
=
====1.应填1.
答案:(1)-1 (2) (3)1
评析:这是一组在已知tanα=m的条件下,求关于sinα、cosα的齐次式(即次数相同)的问题,解答这类“已知某个三角函数,求其余三角函数值”的问题的常规思路是:利用同角间的三角函数关系,求出其余三角函数值,这就需要根据m的取值符号,确定α角所在的象限,再对它进行讨论.这样计算相当繁琐,而在这里灵活地运用“1”的代换,将所求值的式子的分子、分母同除以cosnα,用tannα表示出来,从而简化了解题过程,我们应熟练掌握这种解法.更主要的是由此进一步领悟“具体问题、具体分析”的辩证思想方法.
4.若tanα=2,则的值是( )
A.- B.- C. D.
解析:由tanα=2,则==-,选A.
答案:A
例例例7(1)已知 tanα=m,求sinα的值;
【分析】(1)已知tanα的值求sinα或cosα,一般可将tanα
母都是sinα和cosα的同次式,再转化为关于tanα的式子求值,转化的方法是将分子、分母同除以cosα(或cos2α,这里cosα≠0),即可根据已知条件求值.
【说明】 由tanα的值求sinα和cosα的值,有一些书上利用公
很容易推出,所以不用专门推导和记忆这些公式,这类问题由现有的关系式和方法均可解决.
13.已知在△ABC中,sinA+cosA=,
(1)求sinA·cosA;
(2)判断△ABC是锐角三角形还是钝角三角形;
(3)求tanA的值.
分析:可先把sinA+cosA=两边平方得出sinA·cosA,然后借助于A∈(0,π)及三角函数符号法则可得sinA与cosA的符号,从而进一步构造sinA-cosA的方程,最后联立求解.
解:(1)∵sinA+cosA=①
∴两边平方得1+2sinAcosA=,
∴sinA·cosA=-.
(2)由(1)sinAcosA=-<0,且0<A<π,
可知cosA<0,∴A为钝角,
∴△ABC是钝角三角形.
(3)∵(sinA-cosA)2=1-2sinAcosA
=1+=,
又sinA>0,cosA<0,∴sinA-cosA>0,
∴sinA-cosA=②
∴由①,②可得sinA=,cosA=-,
∴tanA===-.
评析:sinα·cosα与sinα-cosα,sinα+cosα存在内在联系,即:sinα·cosα=[(sinα+cosα)2-1],sinα·cosα=[1-(sinα-cosα)2].可“知一求二”.
6、已知A是三角形的一个内角,sinA+cosA = ,则这个三角形是 ( ) B
A.锐角三角形 B.钝角三角形 C.不等腰直角三角形 D.等腰直角三角形
例3 化简sin2α·tgα+cos2α·ctgα+2sinαcosα
=secα·cscα
解2 原式=(sin2α·tgα+sinα·cosα)+(cos2α·ctgα+sinαcosα)
=tgα·(sin2α+cos2α)+ctgα(sin2α+cos2α)
=tgα+ctgα
=secα·cscα
说明 (1)在解1中,将正切、余切化为正弦、余弦再化简,仍然是循着减少函数种类的思路进行的.
(2)解2中的逆用公式将sinα·cosα用tgα表示,较为灵活,解1与解2相比,思路更自然,因而更实用.
例4 化简:
分析 将被开方式配成完全平方式,脱去根号,进行化简.
函数的定义来证明.
由左边=右边,所以原式成立.
【证法三】(根据三角函数定义)
设P(x,y)是角α终边上的任意一点,则
左边=左边,故等式成立.
展开阅读全文