收藏 分销(赏)

气动薄膜调节阀选择、特点、故障原因及修理方法.doc

上传人:s4****5z 文档编号:8794257 上传时间:2025-03-02 格式:DOC 页数:8 大小:34KB
下载 相关 举报
气动薄膜调节阀选择、特点、故障原因及修理方法.doc_第1页
第1页 / 共8页
气动薄膜调节阀选择、特点、故障原因及修理方法.doc_第2页
第2页 / 共8页
点击查看更多>>
资源描述
气动薄膜调节阀选择、特点、故障原因及修理方法   1、流量特性选择。      在自控系统的设计过程中选择气动薄膜调节阀应着重考虑流量特性。典型的理想特性有直线流量特性、等百分比流量特性(对数流量特性)、快开流量特性和抛物线流量特性四种。直线流量特性在相对开度变化相同的情况下,流量小时流量相对变化值大;流量大时,流量相对变化值小。因此,直线流量调节阀在小开度(小负荷)情况下调节性能不好,不易控制,往往会产生振荡,故直线流量特性调节阀不宜用于小开度的情况,也不宜用于负荷变化较大的调节系统,而适用于负荷比较平稳,变化不大的调节系统。百分比流量特性的调节阀在小负荷时调节作用弱,大负荷调节作用强,它在接近关闭时调节作用弱,工作和缓平稳,而接近全开时调节作用强,工作灵敏有效,在一定程度上,可以改善调节品质,因此它适用于负荷变化较大的场合,无论在全负荷生产和半负荷生产都较好的起调节作用。     2、根据使用要求选择。      气动薄膜调节阀由阀芯和阀体(包括阀座)两部分组成,按不同的使用要求有不同的结构形式。气动薄膜调节阀主要有直通单座阀、双座调节阀和高压角式调节阀。直通单座阀泄漏量小,流体对单座阀芯的推力所形成的不平衡力很大,因此直通单座阀适用于要求泄漏量小、管径小和阀前后压差较低的场合。直通双座阀阀体内有上下两个阀芯,由于流体作用于上下阀芯的推力方向相反而大致抵消;所以双座阀的不平衡力很小,允许阀前后有较大的压差。但由于阀体内流路复杂,用于高压差时对阀体的冲蚀损伤较严重,不宜用于高粘度、含悬浮颗粒或含纤维的介质。此外由于受加工条件的限制,双座阀上下两个阀芯不易同时关严,所以关闭时泄漏量大,尤其是在高温或低温的场合下使用时,因材料的热膨胀系数不同,更易引起严重的泄漏。角式高压阀阀体为直角式,流路简单、阻力小,受高速流体的冲蚀也小,特别适用于高压差、高粘度和含悬浮物颗粒状物质的流体,也可用于修理汽液混相,易闪蒸汽蚀的场合。这种阀体可以避免结焦、粘结和堵塞,便于清洁和自净。      3、根据安全性选择。      气动薄膜调节阀有气开阀和气闭阀两种形式。根据不同生产工艺上的安全和使用要求考虑,当信号压力中断时调节阀处于打开或关闭位置,对工艺生产造成的危害性大小而定。如果阀门处于关闭位置时危害小,则选用气开阀,信号压力中断时,使调节阀处于关闭位置,反之,则选用气闭阀。   4、调节阀口径的选择。    应根据已知的流体计算出所要求的流量系数CV,再根据产品技术参数表选取合适的调节阀口径。在计算CV时要注意液体、气体、水蒸气和其它蒸气的区别。 5、流量特性的选择 调节阀的流量特性是指介质通过阀门的相对流量与阀门的相对开度间的关系。在阀前后压差保持不变时,称为理想流量特性。生产中常用的有直线型、等百分比型、抛物线型和快开型四种。实际生产中,由于管道系统除了调节阀外,还有其它的串、并联管道。因此,调节阀前后压差通常是变化的,这种情况下的流量特性称为工作流量特性。 流量特性的选择实质是如何选择直线和等百分比特性,因为抛物线流量特性介于直线和等百分比之间,一般可用等百分比特性代替;而快开特性用于二位式调节及程序控制中。那么,如何选择调节阀的流量特性呢? 2.1 从调节系统的调节品质分析 原则是:适当选择调节阀的特性,以阀的放大系数的变化来补偿调节对象放大系数的变化,使调节系统的放大系数保持不变的控制效果。若调节对象的放大系数随负荷增加而变小,则应选用等百分比特性的调节阀;若调节对象的放大系数为线性,则应选用直线流量特性。 2.2 从工艺配管情况分析 由于系统配管的情况不同,配管阻力的存在会引起调节阀上压降的变化,从而使流量特性变化。因此应根据系统的特点来选择希望得到的工作特性,然后再考虑配管情况来选择相应的理想特性。流量特性与配管情况对照如下:(S:称为阀阻比,指调节阀全开时阀前后压差ΔPmin与系统总压差ΔP之比。) 2.3 从负荷变化情况分析 直线阀在小开度时流量变化大,调节过于灵敏,容易引起振荡,因此在S小、负荷变化大的场合不宜使用;快开阀一般用于双位调节和程序控制的场合;等百分比阀的放大系数随阀门的行程增加而增大,流量相对变化是恒定不变的,因此适用于负荷变化大、幅度大的场合。生产过程自动化中,等百分比特性是应用最广泛的一种。 3 调节阀口径的选择 当选定了调节阀的类型和流量特性之后,就可进一步确定它的尺寸。流通能力是确定调节阀口径的主要依据。所谓流通能力C,是指在调节阀前后压差为100Kpa、水的密度为1000Kg/m3的条件下,每小时通过阀门的水的立方米数。调节阀口径选择按以下步骤进行。 3.1确定调节阀的最大、最小流通能力Cmax、Cmin 先根据生产能力、设备负荷、介质状态,确定调节阀的最大、最小流量;其次根据工艺管路、设备等组成的系统总压降大小的变化情况来确定调节阀上的最大最小压差。然后,选择合适的计算公式计算出Cmax、Cmin。 3.2根据计算得到的最大流通能力Cmax和已确定的调节阀类型,在调节阀选型样板该系列调节阀额定流通能力Cmax中,选取大于并接近于此Cmax的C值,作为选定的C值,并确定对应的公称直径和阀门直径。 3.3 验算调节阀开度 (1)根据所选择的C值和流量特性,验算阀的开度。一般阀的开度为应全行程的90%~10%,即验算: (2)一般情况下,等百分比阀最大流量时对应开度宜为90%,直线阀宜为70%,抛物线阀宜为80%。 3.4 验算可调比 可调比R是指调节阀所能控制的最大流量与最小流量之比,即R=Qmax/Qmin。因在选用调节阀口径时已使阀的C值大于计算的Cmax值,故应验算R是否小于所选阀的实际可调比,即: 值得注意的是:调节阀的选型比计算重要得多,复杂得多。因为计算只是一个简单的公式计算,它的本身不在于公式的精确度,而在于所给定的工艺参数是否准确。选型涉及到的内容较多,稍不慎,便会导致选型不当,不仅造成人力、物力、财力的浪费,而且使用效果还不理想,带来若干使用问题,如可靠性、寿命、运行质量等。 6、其它调节阀类型的选择 化工生产过程中,被调节的介质特性千差万别,有的高压,有的高粘度,有的有腐蚀性,而且流体的流动状态也各不相同,有的流量很小,有的流量很大。因此,必须选择合适类型的调节阀去满足不同的要求。 1.1 调节阀结构形式的选择 在选择调节阀的结构形式时,主要是根据现场被控工艺介质的特点、工艺生产条件和控制要求等,结合调节阀本身的流量特性和结构特点来选择。如用于大口径、大流量、低压差或浓浊浆状及悬浮颗粒物的介质调节时,可选用气动薄膜调节蝶阀;当要求直角连接,介质为高粘度、含悬浮物和颗粒状介质的调节时,可选用流路简单、阻力小、易于冲洗的气动薄膜角型调节阀;当调节脱盐水介质时,由于脱盐水介质中含有低浓度的酸或碱,它们对衬橡胶的蝶阀、隔膜阀有较大的腐蚀性,因此可选用水修理专用球阀,以延长使用寿命;当要求阀在小开度时工作,就不应选用双座阀,因双座阀有两个阀芯,其下阀芯处于流闭状态,稳定性差,易引起阀的振荡。 此外,选用调节阀时,还应考虑调节阀的阀芯型式。阀芯是调节阀最关键的零件,有直行程阀芯和角行程阀芯两大类。直行程调节阀阀芯是垂直节流的,而介质是水平流进流出的,阀腔内流道必然转弯倒拐,使阀的流路形状如倒“S”型,因而存在许多死区,为介质的沉淀提供了空间,易造成堵塞。角行程调节阀的阀芯是水平节流的,与介质的进出方向一致,因此易把不干净介质带走,而且流路简单,介质沉淀空间少,故其防堵性能好。 再次,还应考虑调节阀上阀盖的形式和所用的填料。当介质温度为-20~200℃时,应选用普通型阀盖;当温度高于200℃时,应选用散热型阀盖;当温度低于-20℃时,应选用长颈型阀盖;在有剧毒、易挥发、易渗透等重要介质的场合,应选用波纹管密封型阀盖。上阀盖填料室中的填料有聚四氟乙烯或石墨填料,前者摩擦系数小,可减少回差,且密封性好;后者使用寿命长,但密封性差。 1.2 调节阀作用方式的选择 调节阀气开、气关形式的选择,主要从工艺生产上的安全要求出发,其原则是:当仪表供气系统发生故障中断供气或控制信号中断时,调节阀处于打开或关闭的位置由其对生产造成危害性大小决定。如阀门处于打开位置时危险性小,则应选气关阀。 气动薄膜调节阀的特点 ①正、反作用执行机构的结构基本相同,由上膜盖、下膜盖、薄膜膜片、推杆、弹簧、调节件、支架和行程显板等组成。 ②正、反作用执行机构结构的主要区别是反作用执行机构的输入信号在膜盒下部,引出的推杆也在下部,由于薄膜片的良好密封,因此,在阀杆引出处不需要进行密封。 ③可通过调节件的调整,改变弹簧初始力,从而改变执行机构的推力。 ④气动薄膜调节阀的执行机构的输入输出特性呈现线性关系,既输出位移量与输入信号压力之间成线性关系。输出的位移称行程,由行程显示板显示。一些反作用执行机构还在膜盒上部安装阀位显示器,用于显示阀位。国产气动薄膜调节阀执行机构的行程有10mm、16mm、25mm、40mm、60mm和100mm等六种规格。 ⑤执行机构的膜片有效面积与推力成正比,有效面积越大,执行机构的推力也越大。 ⑥气动薄膜调节阀可添加位移转换装置,使直线位移转换为角位移,用于旋转阀体。 ⑦可添加阀门定位器,实现阀位检测和反馈,提高控制性能。 ⑧气动薄膜调节阀可添加手轮机构,在自动控制失效时采用手轮进行降级操作,提高系统可靠性。 ⑨气动薄膜调节阀可添加自锁装置,实现控制阀的自锁和保位。 精小型气动薄膜调节阀的执行机构在机构上作了重要改进,它采用多个弹簧代替原来的一个弹簧,降低了执行机构的高度和重量,具有结构紧凑、节能、输出推力大等优点。与传统气动薄膜调节阀相比,高低和重量约可降低30%。 侧装式气动薄膜调节阀的执行机构也称增力式执行机构,它采用增力装置将气动薄膜执行机构的水平推力经杠杆的放大,转换为垂直方向的推力。由于在增力装置上可方便地更换机件的连接关系来更换正反作用方式,改变放大倍数,受到用户青睐。 滚动膜片执行机构采用滚动膜片,在相同有效面积下的位移量较大,与活塞执行机构比,有摩擦力较小、密封性能好等特点。它通常与偏心旋转阀配套使用。 (1)调节阀应垂直安装在水平管道上,如在特殊情况下需要水平和倾斜安装时,一般要加支撑。 (2)当选定调节阀的公称通径与工艺管径不同时,应加装异径接头进行连接。 (3)安装场地应有较好的环境条件,环境温度应在-25~+55℃。 (4)尽量避免安装在有振源的场合,否则应采取必要的防振加固措施。 (5)安装时,必须使阀体上或法兰上的箭头方向指向介质方向。 (6)安装前,需要认真清除管道内焊渣和其它杂物;在安装后,应使阀芯处于最大开度,并对管道和调节阀再次进行清洗,以防杂物卡住和损伤节流件. (7)气动调节阀应安装在便于维护、修理的位置。 (8)阀前直管段应尽可能长。 (9)出口配管应用3~5倍管道直径的直管段。 (10)为了确保调节阀和调节系统出现故障时不致影响生产和发生安全事故,一般都需要安装旁路和旁路阀。旁路阀不能安装在调节阀的正上方,以免旁路阀内腐蚀性介质泄漏至调节阀上。调节阀前、后需安装截止阀,对于高温、高压、易冻、黏稠介质,还要安装导淋阀。 3 调节阀常见故障及现场修理 3.1 卡堵 调节阀常见的问题是卡堵,通常出现在新系统投运初期和大修后投运初期。造成卡堵的原因有: (1)由于管道内的焊渣、铁屑等停留在节流口,造成导向部位堵塞。 (2)调节阀在检修过程中填料安装过紧,导致摩擦力增大,造成小信号不动作而大信号动作过头。 故障修理措施: (1)可迅速开启和关闭副线或调节阀,让杂物从副线或调节阀处被冲走。 (2)用管钳夹紧阀杆,在外加信号压力的情况下,来回旋转阀杆,使阀芯闪过卡处。若无效,则适当加大气源压力以增加驱动功率,反复上下移动几次,即可解决问题。若仍不能动作,则需要进行解体修理. 3.2 不动作 在日常生产操作中,调节阀不动作也是比较常见的故障。 一、调节阀不动作原因及相应的修理方法 3.3 泄漏 (1)填料泄漏 造成填料泄漏的原因主要是界面泄漏。界面泄漏通常是由于填料接触压力逐渐下降以及填料自身老化等原因引起,这时压力介质就会沿着填料与阀杆之间的接触间隙向外泄漏。 解决措施:为使填料装入方便,在填料函顶端倒角,在填料函底部放置耐冲蚀的间隙较小的金属保护环(与填料的接触面不能是斜面),以防止填料被介质压力推出;填料函各部位与填料接触部分的表面要进行精加工,以提高金属表面的光洁度,减少填料的磨损;填料选用柔性石墨,因其具有气密性好、摩擦力小、长期使用后变化小、磨损烧损小、维修简单、压盖螺栓重新拧紧后摩擦力不发生变化、耐压性和耐热性良好、不受内部介质的侵蚀、填料底部的金属保护环不发生点蚀等优点。 (2)阀芯、阀座变形泄漏 阀芯、阀座出现泄漏的主要原因是由于调节阀在生产过程中的铸造和锻造缺陷导致了腐蚀的加剧,而腐蚀介质的通过、流体介质的冲刷也可造成调节阀泄漏,腐蚀主要以侵蚀或气蚀的形式存在。 解决措施:把好阀芯、阀座材料的选型关、质量关,应选择耐腐蚀性材料;若阀芯、阀座变形不太严重,可通过细砂纸研磨消除痕迹,提高密封面光洁度,提高密封性能;若阀门严重损坏,则应更换新阀。 3.4 振荡 调节阀的弹簧刚度不足,调节输出信号不稳定而急剧变化,易引起调节阀振荡。当调节阀的振动频率与系统频率相同时,管道基座振动剧烈,阀门随之振动;调节阀选型不当,当阀门在小开度情况下工作时,流阻、流量和压力发生急剧变化,当变化超过阀门刚度时,阀门的稳定性降低,从而产生振荡。 解决措施:对于轻微的振动,可以通过增加阀门的刚度来消除,还可以选用刚度较高的弹簧,改用活塞式执行机构,管道和基座振荡剧烈可以通过增加支撑来消除干扰;若阀门的振动频率与系统频率相同,则更换不同结构的阀门;工作在小开度情况下造成的振荡,则是由于阀门流量值选择过大造成的,这种情况必须重新选择流量值与工艺相近(略大)的调节阀,或者采用分程调节方式,或者使用子母阀门以满足调节阀在小开度情况下的工作。 二、引起振荡的原因及修理方法 3.5 动作迟钝 一般来说,用于紧急停车场合的自调阀,如紧急切断阀、紧急放空阀等,在紧急情况出现时需要可靠的动作,否则会给系统生产带来严重的威胁。造成调节阀动作迟钝的主要原因有: ① 气动薄膜执行机构中膜片破损泄漏; ② 执行机构中的O形密封圈泄漏; ③ 阀体内有杂物堵塞; ④ 聚四氟乙烯填料变质硬化或石墨-石棉填料润滑油干燥; ⑤ 填料压得太紧,摩擦阻力增大; ⑥ 由于阀杆不直导致摩擦阻力增大。 解决措施: ① 更换破损的膜片; ② 更换O形密封圈; ③ 清理阀体内的杂物; ④ 更换填料; ⑤ 适当调整填料压盖; ⑥ 更换阀杆。 3.6 阀门定位器故障 普通定位器采用机械式力平衡原理工作,即喷嘴挡板技术,主要存在以下故障: ① 因其采用机械式力平衡工作原理,可动部件过多,容易受温度、振动的影响,造成调节阀的波动; ② 采用喷嘴挡板技术,由于喷嘴孔很小,容易被空气中的灰尘堵塞,使定位器不能正常工作; ③ 采用力平衡工作原理,弹簧在条件恶劣的现场中长期工作,其弹性系数易发生改变,导致定位器线性变差,阀门的控制质量出现下降。 由于阀门定位器的阀位工作传感电位器工作在现场,电阻值易发生变化,造成小信号不动作、大信号全开的危险情况。为了确保智能定位器的可靠性和可利用性,必须经常对阀门的定位器进行测试。 4 结语 通过对调节阀故障原因分析,采取适当的修理、改进方法,可大大降低仪表故障率,提高调节阀的使用率,有效提高了调节系统的稳定性,延长了生产装置的运行寿命,对提高企业的生产效率和经济效益以及降低能耗都有着极其重要的作用。 
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服