资源描述
模拟信号(Analog signal)主要是与离散的数字信号相对的连续信号。模拟信号分布于自然界的各个角落,如每天温度的变化。而数字信号是人为抽象出来的在时间上的不连续信号。电学上的模拟信号是主要是指振幅和相位都连续的电信号,此信号可以以类比电路进行各种运算,如放大、相加、相乘等。数字信号(Digital signal)是离散时间信号(discrete-time signal)的数字化表示,通常可由模拟信号(analog signal)获得。模拟是一组随时间改变的数据,如某地方的温度变化,汽车在行驶过程中的速度,或电路中某节点的电压幅度等。有些模拟信号可以用数学函数来表示,其中时间是自变量而信号本身则作为应变量。离散时间信号是模拟信号的采样结果:离散信号的取值只在某些固定的时间点有意义 (其他地方没有定义),而不像模拟信号那样在时间轴上具有连续不断的取值。若离散时间信号在各个采样点(samples)上的取值只是原来模拟信号取值(可能需要无限长的数字来表示)的一个近似,那么我们就可以用有限字长(字长长度因应近似的精确程度而有所不同)来表示所有的采样点取值,这样的离散时间信号成为数字信号。将一组精确测量的数值用有限字长的数值来表示的过程称为量化(Quantization)。从概念上讲,数字信号是量化的离散时间信号,而离散时间信号则是已经采样的模拟信号。随着电子技术的飞速发展,数字信号的应用也日益广泛。很多现代的媒体处理工具,尤其是需要和计算机相连的仪器都从原来的模拟信号表示方式改为使用数字信号表示方式。我们日常常见的例子包括手机、视频或音频播放器和数码相机等。一般情况下,数字信号是以二进制数来表示的,因此信号的量化精度一般以比特(bits)来衡量。
模拟信号与数字信号 (1)模拟信号与数字信号 不同的数据必须转换为相应的信号才能进行传输:模拟数据一般采用模拟信号(Analog Signal),例如用一系列连续变化的电磁波(如无线电与电视广播中的电磁波),或电压信号(如电话传输中的音频电压信号)来表示;数字数据则采用数字信号(Digital Signal),例如用一系列断续变化的电压脉冲(如我们可用恒定的正电压表示二进制数1,用恒定的负电压表示二进制数0),或光脉冲来表示。 当模拟信号采用连续变化的电磁波来表示时,电磁波本身既是信号载体,同时作为传输介质;而当模拟信号采用连续变化的信号电压来表示时,它一般通过传统的模拟信号传输线路(例如电话网、有线电视网)来传输。 当数字信号采用断续变化的电压或光脉冲来表示时,一般则需要用双绞线、电缆或光纤介质将通信双方连接起来,才能将信号从一个节点传到另一个节点。 (2)模拟信号与数字信号之间的相互转换 模拟信号和数字信号之间可以相互转换:模拟信号一般通过PCM脉码调制(Pulse Code Modulation)方法量化为数字信号,即让模拟信号的不同幅度分别对应不同的二进制值,例如采用8位编码可将模拟信号量化为2^8=256个量级,实用中常采取24位或30位编码;数字信号一般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。 计算机、计算机局域网与城域网中均使用二进制数字信号,目前在计算机广域网中实际传送的则既有二进制数字信号,也有由数字信号转换而得的模拟信号。但是更具应用发展前景的是数字信号。
模拟信号与数字信号
一、模拟信号
模拟信号是一种不仅再时间上连续、数值上也连续的物理量,具有无穷多的数值,其数学表达是必较复杂,比如正弦函数、指数函数等。
从自然界感知的大部分物理量都是模拟性质的,如速度、压力、温度、声音、重量以及位置等都是最常见的物理量。
图1.1.1 是几种常见的模拟信号波形
正弦波:例如我们最经常接触到的声波。可能你有机会用一台示波器察看一个真实的声音波形,你将发现所看到的波形可不像这里所示范的这样清晰的正弦波,而是看起来非常杂乱的一种波形,确实如此,这只是因为真实的声音波形中包含了多种频率的正弦波。另一个例子由发条驱动的钟摆,将钟摆的运动轨迹延时间轴展开,得到的连续波形正好就是一个正弦波形。
调幅波:自从发明收音机以来,普通百姓就开始与调幅波打交道了,这种波形是以一种频率很高的正弦波作为载波,在此基础上叠加一个频率较低的信号波就形成了入图所示得波形。
阻尼振荡波:凡是自然界中可以看到的振荡运动,都可以观察到这种波形,比如弹簧的自由振动、钟摆的自由运动(不同于由发条驱动得钟摆运动)等,如果说这些还有人工的痕迹,那么水波的涟漪则是在自然不过的了。
指数衰减波:许多发光物质都具有这种波形,也就是荧光寿命。我们平时使用的日光灯就是一个例子,当我们将一个点亮的日光灯的电源切断时,可以观察到日光灯不是一下子就熄灭,而是有一个短暂的熄灭过程,也就是通常所说的日光灯的余辉。
在电子技术中通常采用一些传感器将这些信号转换为电流、电压或电阻等电学量。这些同样是模拟量,因为如果采用一台示波器来测量这些电学量的波形的话,将观察到与图1.1.2图示波形一样的波形。
实际使用中电流和电压常用图形来表示。
下面我们看到的就是一个幅值为0~5V、周期为100ms的电压波形:
图1.1.2 周期性电压波形
图中电压的幅值按照正弦波形周期性地变化,图中显示了两个完整的波形,起始相位为零,如果想确定其中值的个数是不可能的,其值的个数有无穷多个。
正如我们在模拟电路中所学习的,周期性模拟信号的基本参数之一是频率,也可以用周期表示。通常频率用f表示,单位为赫兹(Hz)
;周期用T表示,单位为秒(s)。二者之间的关系是互为倒数,即有。图1.1.2中已知电压波形的周期T=100ms,则频率为10Hz,该电压的幅值介于0~5V之间,值的个数为无穷大。
典型的模拟信号包括工频信号、射频信号、视频信号等。我国和欧洲的工频信号的频率为50Hz ,美国为60Hz 。调幅波的射频信号在 530Hz~1600kHz之间。调频波的射频信号在880MHz~108MHz之间。甚高频(VHF)和超高频(UHF)视频信号在6GHz以上。
二、数字信号
电子系统中一般含有模拟和数字两种构件,通常使用的收音机等
,其中的电路结构主要是模拟电路,比如功率放大器,不过现在有许多音响系统中不仅包含模拟电路,而且已经有了数字模块,比如CD机
,其中主要的部件就是数字模块;而像电脑这样一类的电子系统,则主要就是建立在数字技术上的,但即使是所谓的纯数字系统,仍然离不开模拟电路,因为数字电路实事上可以说是模拟电路的一种特例,比如说在模拟电路中我们采用晶体管的线性工作区间,而数字电路则采用晶体管的非线性工作区间,因此说模拟电路是电子系统中必须的组成部分。
人们发现在对信号的存储、分析和传输中,数字电路更具优越性
。为了能够处理存储连续变化的模拟信号,数字电路采用二进制数首先对其进行量化处理后,再使用复杂的数字系统来实现信号的存储、分析和量化。
1.二值数字逻辑和逻辑电平
二进制数正好是利用二值数字逻辑中的0和1来表示的。二值数字逻辑是Binary Digital Logic的译称。
与模拟信号相反,数字数字信号在时间上和数值上均是离散的,而离散信号的值只有真或假,是与不是,因此可以使用二进制数中的0和1来表示。需要注意的是这里的0和1并非通常意义上的0和1
,也就是说并不像在十进制中0和1有大小之分,这里的0和1指的是逻辑0和逻辑1。
因此我们可以将其称之为二值数字逻辑或简称为数字逻辑。
二值数字的产生,是基于客观世界中存在许多可以用彼此相关又互相对立的两种状态来描述的事物,比如人的性别,不是男的就是女的,开关的开与关等,就是这样一种关系。很显然,这些都具有明显的二值特性,因此完全可以用电子器件的开关特性来表示。比如,利用晶体管的非线性特性制作成的开关二极管,工作时仅有两种状态,不是导通就是关断,也是一个二值特性,因此可以用其来表示人的性别等。
当开关器件起作用时,电路中只可能出现两种电压值,当开关器件导通时,开关后的电路中将有电流流过(比如串联于三极管发射极的负载),因而将可得到一个较高的电压值,而当开关器件关断时,开关后的电路中将没有电流流过,因而将只能得到一个较低的电压值
,从而在电路中将形成离散的电压信号,也叫数字电压,通常称之为逻辑电平。
应该注意的是逻辑电平不是一个具体的物理量,而是物理量的相对表示。比如,当使用示波器测量一个音响设备的输出时,你可观察到一个输出电压幅值连续变化的波形,但是将该输出信号量化成二值信号后,你观察到的只是一系列电压值不是5V就是0V的离散电压值,很显然我们不能因此就说该音响设备的输出就是5V。
电压/V
二值逻辑
逻辑电平
正逻辑
负逻辑
+5
1
0
H(高电平)
0
0
1
L(低电平)
表1.1.1 逻辑电平与电压值的关系
从表中可以看到,+5V的电压值可以用二值逻辑中的1或0来表示,就看你使用的是正逻辑还是负逻辑。在逻辑电平中则使用高电平来表示。事实上高电平并非就只等于+5V,可以是3V,还可以是其它任何值。
图1.1.3表示用逻辑电平描述的数字波形,其中图1.1.3a的逻辑0表示0V,逻辑1表示5V;图1.1.3b的逻辑0表示5V,逻辑1表示0V;图1.1.3c 则是一个16位长数据的图形表示。
2.数字波形
数字波形是逻辑电平对时间的图形表示。通常,我们将只有两个离散值的波形称之为脉冲波形,在这一点上脉冲波形与数字波形是一致的,只不过数字波形用逻辑电平表示,而脉冲波形用电压值表示而已。
与模拟波形的定义相同,数字波形也有周期性和非周期性之分。图1.1.4表示了这两类数字波形:
周期性数字波形同样用周期T或频率f来描述;而脉冲波形的频率常称为脉冲重复率PRR--Pulse Repetition Rate。
脉冲波形的参数:
脉冲宽度:tw表示,表示脉冲作用的时间;
占空比:q,表示脉冲宽度tw占整个周期T的百分数,常用下式来表示:
占空比是一个重要参数,其定义同样适用于数字波形。
图1.1.5表示两种数字波形及其周期、频率、脉冲宽度和占空比:
例题1.1.1设周期性数字波形的高电平持续6ms,低电平持续10ms
,求占空比q?
解:根据给定的高电平持续时间有tw= 6ms,而高电平与低电平持续时间之和即为周期T
所以有 T=6ms+10ms=16ms
到目前为止,我们所讨论的数字波形都是理想波形,然而实际的数字系统中,数字波形的升降都要经历一段时间,也就是说波形存在上升时间tr和下降时间tf 。
上升时间tr的定义是:从脉冲幅值的10%到90%所经历的时间;下降时间tf的定义刚好相反:从脉冲幅值的90%到10%所经历的时间。tr和tf的典型值约为几个纳秒(ns),视不同类型的器件和电路而异。
脉冲宽度的定义是脉冲幅值为50%时前后两个时间点所跨越的时间。非理想脉冲如图1.1.6所示:
例题1.1.2 试绘出一脉冲波形,设它的占空比为50%,脉冲宽度 tw=100ns,上升时间tr=10ns,下降时间tf=20ns。
解:根据题意,可绘出脉冲波形如下:
图1.1.7 例1.1.2的波形图
一般情况下波形的上升或下降时间均要比高电平或低电平的持续时间要小很多,画波形的目的主要是为了了解高、低电平所经历的时间。因此在理想波形中就只有高、低电平,而忽略了上升和下降时间
。本课程中所用的数字波形将采用理想波形。
当然,实际中碰到的波形,不管从示波器上来看,其上升沿和下降沿是多么的直,tr和tf都不可能为零,只是在数字电路中,只需关注逻辑电平的高低,因此在画波形时只需画出高低电平所经历的时间即可,无需画出上升沿和下降沿。
(a)
(b)
图1.1.8 用逻辑1和0表示的二值位行图
(a) 对称方波 (b) 二值数据
上图为一个二值位形图,其中1或1占用的最小时间称为位时间
,也就是1位数据所占用的时间。我们将每秒钟所传输的位数称为数据率或比特率。
例题1.1.3 某通信系统每秒中传输1.544兆位数据,求每位数据的时间。
解:根据题意,只需将1.544M倒数,即可求得每位数据的时间为:
举例来说,象图1.1.8b中看到的22位的二值位形图,如果每一位数据所占用的时间是648ns,则22位共占用14256ns,也就是14.256微秒,而其数据率就是1.544兆。
在设计数字集成电路时,有时为了分析各种信号之间的逻辑关系
,需要将多个数字波形按时间排列在一起,用来表明相互间的时间关系,我们将这样一种关系图称为时序图(Timing diagram)。
时序图中的每一个波形都被称为时间信号。时序图被广泛运用在设计数字集成电路中,在设计存储器、微处理机等数字应用电路时均须附有时序图,以便数字系统的分析、应用和设计。
图1.1.9就是一个时序图的例子:
图1.1.9 数字时序图
图中CP为时钟脉冲信号,用作系统中的时间参考信号,一般由石英晶体振荡器来产生,如图所示波形为对称方波。关于图中各个波形的具体作用,将在以后的课程加以介绍
3.模拟量的数字表示
为便于存储、分析和传输,常常需要将模拟信号转换为数字信号
。
在数字电路中用数字0、1的编码来表示一个模拟量,这里的编码所指的是数字0、1的字符串,图1.1.3和图1.1.8所示的数字波形即是这种编码的图形。这样一种编码实际上就是二进制编码。
下面通过图1.1.10的图示来了解用数字表示模拟信号的过程:
取其中A、B、C3个取样点。以B点为例,该点的模拟电压为3V,将其送入一个模数转换器后可得到以数字0、1表示的数字电压
,如图1.1.10b所示。同样地也可以得到A、C点的数字编码。
当信号的取样点数足够多时,原信号就可以被较真实地复制下来
。
当然,必要的话还可以通过数模转换器将已经数字化的信号还原成模拟信号。
非常好我支持^.^
(109) 90.80%
不好我反对
(11) 9.20%
分享到:
分享此文章到新浪微博 分享此文章到开心网 分享此文章到人人网 分享此文章到豆瓣网 分享此文章到腾讯微博
加入收藏(1) + 推荐给朋友 + 挑错
相关阅读:
· [新品快讯] 欧胜发布WM0010第一款完全可编程独立音频数字信 2011-02-23
· [汽车电子] 关于数字信号控制器在汽车设计中的应用 2011-01-26
· [FPGA/ASIC技术] 基于FPGA实现多路模拟信号自适应采集系统 2011-01-14
· [模拟技术] 有效简化模拟信号隔离应用中隔离放大器设计的 2011-01-08
· [模拟技术] 数字信号电平的测试与确定 2011-01-04
· [医疗电子] 模拟信号路径在便携医疗设备中的技术要求 2010-12-17
· [通信设计应用] 数字信号处理系统的抗干扰措施 2010-12-17
· [ARM] 基于Cortex-M4/M0双核架构的非对称数字信号控制器 2010-11-03
( 发表人:发烧友 )
用户评论
查看全部0条评论
发表评论
窗体顶端
用户评论
评价:好评中评差评
发表评论,获取积分! 请遵守相关规定!提 交
登录发言
or
注册会员
游客:
窗体底端
深度阅读
· 你与杰出电子工程师的差距在哪? 03-02
· (经典)电子工程师的设计经验笔记 02-26
· 深入探讨双绞线知识 02-21
· 电子电路工程师必备的20种模拟电路 02-12
· 谐振器和振荡器的差异分析 02-11
相关下载
· DSPIC数字信号控制器资料10
· 利用数字信号控制器实现稳健的PLC通信0
· 数字信号处理器代码生成的地址分配自适应遗传14
· 基于数字信号处理器的空间矢量变送器的设计7
· DSP-4数字信号处理器3
· 二代小波消噪在数字信号处理器中的实时实现12
· 数字信号处理DIGITAL SIGNAL PROCESSING(DSP)24
· 高性能数字信号处理的Virtex-5 SXT选择方案2
电子技术文章阅读排行
1. (经典)电子工程师的设计经验笔记 02-26
2. 你与杰出电子工程师的差距在哪? 03-02
3. 电子元器件基础知识 09-19
4. USB接口定义 04-21
5. 电脑主机内部结构图 01-15
6. 电子电路基础知识 01-15
7. 电容充电放电时间计算公式 03-05
8. 三极管9013管脚 参数 封装说明 12-05
9. 无功功率计算公式 有功功率计算公式 08-13
10. 1安培等于多少毫安?1一安等于多少毫安? 08-13
热门词
传感器 变频器 LED 芯片 显示器 开关电源 单片机 DSP CMOS CANopen
关于本站 | 广告服务 | 用户建议 | 版权申明 | 友情链接 | 欢迎投稿 | 网站地图
Powered by: 电子发烧友 ( 电路图 )
Copyright 2006-2011 .电子发烧友 .All Rights Reserved 粤ICP备07065979号
展开阅读全文