收藏 分销(赏)

三角函数关系式.doc

上传人:s4****5z 文档编号:8672868 上传时间:2025-02-25 格式:DOC 页数:12 大小:63KB
下载 相关 举报
三角函数关系式.doc_第1页
第1页 / 共12页
三角函数关系式.doc_第2页
第2页 / 共12页
点击查看更多>>
资源描述
同角三角函数关系式    平方关系 sin^2(α)+cos^2(α)=1 cos(2α)=cos^2(α)-sin^2(α)=1- 2sin^2(α)=2cos^2(α)-1 sin(2α)=2sin(α)cos(α) tan^2(α)+1=1/cos^2(α) 2sin^2(α)=1-cos(2α) cot^2(α)+1=1/sin^2(α) 积的关系 sinα=tanα×cosα cosα=cotα×sinα tanα=sinα×secα cotα=cosα×cscα secα=tanα×cscα cscα=secα×cotα 倒数关系  tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系  sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 诱导公式    公式一: 设α为任意角,终边相同的角的同一三角函数的值相等 k是整数 sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα sec(2kπ+α)=secα csc(2kπ+α)=cscα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系 sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα sec(π+α)=-secα csc(π+α)=-cscα 公式三: 任意角α与 -α的三角函数值之间的关系 sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα sec(-α)=secα csc(-α)=-cscα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系 sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα sec(π-α)=-secα csc(π-α)=cscα 公式五: 利用公式四和三角函数的奇偶性可以得到α-π与α的三角函数值之间的关系 sin(α-π)=-sinα cos(α-π)=-cosα tan(α-π)=tanα cot(α-π)=cotα sec(α-π)=-secα csc(α-π)=-cscα 公式六: 利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系 sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα sec(2π-α)=secα csc(2π-α)=-cscα 公式七: π/2±α及3π/2±α与α的三角函数值之间的关系 sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα sec(π/2+α)=-cscα csc(π/2+α)=secα sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα sec(π/2-α)=cscα csc(π/2-α)=secα sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα sec(3π/2+α)=cscα csc(3π/2+α)=-secα sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα sec(3π/2-α)=-cscα csc(3π/2-α)=-secα 诱导公式的表格以及推导方法(定名法则和定号法则) 两角和与差的三角函数   cos(α+β)=cosα·cosβ-sinα·sinβ   cos(α-β)=cosα·cosβ+sinα·sinβ   sin(α±β)=sinα·cosβ±cosα·sinβ   tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)   tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ) 和差化积公式   sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]   sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]   cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]   cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2] 积化和差公式   sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]   cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]   cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]   sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)] 倍角公式   sin(2α)=2sinα·cosα=2/(tanα+cotα)   cos(2α)=cos^2α-sin^2;α=2cos^2;α-1=1-2sin^2;α    tan(2α)=2tanα/(1-tan^2;α)   cot(2α)=(cot^2;α-1)/(2cotα)   sec(2α)=sec^2;α/(1-tan^2;α)   csc(2α)=1/2*secα·cscα 三倍角公式   sin(3α) = 3sinα-4sin^3;α = 4sinα·sin(60°+α)sin(60°-α)   cos(3α) = 4cos^3;α-3cosα = 4cosα·cos(60°+α)cos(60°-α) tan(3α)=(3tanα-tan^3;α)/(1-3tan^2;α)=tanαtan(π/3+α)tan(π/3-α)   cot(3α)=(cot^3;α-3cotα)/(3cotα-1) n倍角公式  sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-…   cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-… 半角公式   sin(α/2)=±√((1-cosα)/2)   cos(α/2)=±√((1+cosα)/2)   tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)   sec(α/2)=±√((2secα/(secα+1))   csc(α/2)=±√((2secα/(secα-1)) 辅助角公式   Asinα+Bcosα=√(A^2;+B^2;)sin(α+arctan(B/A))   Asinα+Bcosα=√(A^2;+B^2;)cos(α-arctan(A/B)) 万能公式   sin(a)= (2tan(a/2))/(1+tan^2;(a/2))   cos(a)= (1-tan^2;(a/2))/(1+tan^2;(a/2))   tan(a)= (2tan(a/2))/(1-tan^2;(a/2)) 降幂公式   sin^2;α=(1-cos(2α))/2=versin(2α)/2   cos^2;α=(1+cos(2α))/2=covers(2α)/2   tan^2;α=(1-cos(2α))/(1+cos(2α)) 三角和的三角函数   sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ   cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ   tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα) 特殊角的三角函数值   ​ 正弦 余弦 正切 余切 ​ 0 0 1 0 不存在 ​ π/6 1/2 √3/2 √3/3 √3 ​ π/4 √2/2 √2/2 1 1 ​ π/3 √3/2 1/2 √3 √3/3 ​ π/2 1 0 不存在 0 ​ π 0 -1 0 不存在 ​ 幂级数   c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)   c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)   它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...及a都是常数, 这种级数称为幂级数。 泰勒展开式   泰勒展开式又叫幂级数展开法   f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+…… 实用幂级数: e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+…… ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1) sinx=x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。 (-∞<x<∞) cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)   arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)   arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1) arctan x = x - x^3/3 + x^5/5 -……(x≤1) sinhx= x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞) coshx= 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)   arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)   arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)   在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。 傅立叶级数    傅里叶级数   傅里叶级数又称三角级数   f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)   a0=1/π∫(π..-π) (f(x))dx   an=1/π∫(π..-π) (f(x)cosnx)dx   bn=1/π∫(π..-π) (f(x)sinnx)dx 三角函数的数值符号   正弦:第一,二象限为正,第三,四象限为负   余弦:第一,四象限为正,第二,三象限为负   正切:第一,三象限为正,第二,四象限为负 编辑本段相关概念 三角形与三角函数   1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)   2.第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC   3.第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc·cosA   4.正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a-b)/(a+b)=tan[(A-B)/2]/tan[(A+B)/2]=tan[(A-B)/2]/cot(C/2)   5.三角形中的恒等式:   对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC   证明:   已知(A+B)=(π-C)   所以tan(A+B)=tan(π-C)   则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)   整理可得   tanA+tanB+tanC=tanAtanBtanC   类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ   三角函数图像: 定义域和值域   sin(x),cos(x)的定义域为R,值域为〔-1,1〕   tan(x)的定义域为x不等于π/2+kπ,值域为R   cot(x)的定义域为x不等于kπ,值域为R   y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a&sup2;+b&sup2;) , c+√(a&sup2;+b&sup2;)]
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服