资源描述
同角三角函数关系式
平方关系
sin^2(α)+cos^2(α)=1
cos(2α)=cos^2(α)-sin^2(α)=1- 2sin^2(α)=2cos^2(α)-1 sin(2α)=2sin(α)cos(α)
tan^2(α)+1=1/cos^2(α)
2sin^2(α)=1-cos(2α)
cot^2(α)+1=1/sin^2(α)
积的关系
sinα=tanα×cosα
cosα=cotα×sinα
tanα=sinα×secα
cotα=cosα×cscα
secα=tanα×cscα
cscα=secα×cotα
倒数关系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系
sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
诱导公式
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等
k是整数
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sec(2kπ+α)=secα
csc(2kπ+α)=cscα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
公式三:
任意角α与 -α的三角函数值之间的关系
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
sec(-α)=secα
csc(-α)=-cscα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sec(π-α)=-secα
csc(π-α)=cscα
公式五:
利用公式四和三角函数的奇偶性可以得到α-π与α的三角函数值之间的关系
sin(α-π)=-sinα
cos(α-π)=-cosα
tan(α-π)=tanα
cot(α-π)=cotα
sec(α-π)=-secα
csc(α-π)=-cscα
公式六:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sec(2π-α)=secα
csc(2π-α)=-cscα
公式七:
π/2±α及3π/2±α与α的三角函数值之间的关系
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sec(π/2+α)=-cscα
csc(π/2+α)=secα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sec(π/2-α)=cscα
csc(π/2-α)=secα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sec(3π/2+α)=cscα
csc(3π/2+α)=-secα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sec(3π/2-α)=-cscα
csc(3π/2-α)=-secα
诱导公式的表格以及推导方法(定名法则和定号法则)
两角和与差的三角函数
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化积公式
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
积化和差公式
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
倍角公式
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2α-sin^2;α=2cos^2;α-1=1-2sin^2;α
tan(2α)=2tanα/(1-tan^2;α)
cot(2α)=(cot^2;α-1)/(2cotα)
sec(2α)=sec^2;α/(1-tan^2;α)
csc(2α)=1/2*secα·cscα
三倍角公式
sin(3α) = 3sinα-4sin^3;α = 4sinα·sin(60°+α)sin(60°-α)
cos(3α) = 4cos^3;α-3cosα = 4cosα·cos(60°+α)cos(60°-α)
tan(3α)=(3tanα-tan^3;α)/(1-3tan^2;α)=tanαtan(π/3+α)tan(π/3-α)
cot(3α)=(cot^3;α-3cotα)/(3cotα-1)
n倍角公式 sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-… cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…
半角公式
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
cot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα)
sec(α/2)=±√((2secα/(secα+1))
csc(α/2)=±√((2secα/(secα-1))
辅助角公式
Asinα+Bcosα=√(A^2;+B^2;)sin(α+arctan(B/A))
Asinα+Bcosα=√(A^2;+B^2;)cos(α-arctan(A/B))
万能公式
sin(a)= (2tan(a/2))/(1+tan^2;(a/2))
cos(a)= (1-tan^2;(a/2))/(1+tan^2;(a/2))
tan(a)= (2tan(a/2))/(1-tan^2;(a/2))
降幂公式
sin^2;α=(1-cos(2α))/2=versin(2α)/2
cos^2;α=(1+cos(2α))/2=covers(2α)/2
tan^2;α=(1-cos(2α))/(1+cos(2α))
三角和的三角函数
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
特殊角的三角函数值
正弦
余弦
正切
余切
0
0
1
0
不存在
π/6
1/2
√3/2
√3/3
√3
π/4
√2/2
√2/2
1
1
π/3
√3/2
1/2
√3
√3/3
π/2
1
0
不存在
0
π
0
-1
0
不存在
幂级数
c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞)
它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...及a都是常数, 这种级数称为幂级数。
泰勒展开式
泰勒展开式又叫幂级数展开法
f(x)=f(a)+f'(a)/1!*(x-a)+f''(a)/2!*(x-a)2+...+f(n)(a)/n!*(x-a)n+……
实用幂级数:
e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……
ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)*(x^k)/k(|x|<1)
sinx=x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。 (-∞<x<∞)
cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞<x<∞)
arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)
arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)
arctan x = x - x^3/3 + x^5/5 -……(x≤1)
sinhx= x+x^3/3!+x^5/5!+……+(-1)^(k-1)*(x^2k-1)/(2k-1)!+…… (-∞<x<∞)
coshx= 1+x^2/2!+x^4/4!+……+(-1)k*(x^2k)/(2k)!+……(-∞<x<∞)
arcsinh x = x - 1/2*x^3/3 + 1*3/(2*4)*x^5/5 - …… (|x|<1)
arctanh x = x + x^3/3 + x^5/5 + ……(|x|<1)
在解初等三角函数时,只需记住公式便可轻松作答,在竞赛中,往往会用到与图像结合的方法求三角函数值、三角函数不等式、面积等等。
傅立叶级数
傅里叶级数
傅里叶级数又称三角级数
f(x)=a0/2+∑(n=0..∞) (ancosnx+bnsinnx)
a0=1/π∫(π..-π) (f(x))dx
an=1/π∫(π..-π) (f(x)cosnx)dx
bn=1/π∫(π..-π) (f(x)sinnx)dx
三角函数的数值符号
正弦:第一,二象限为正,第三,四象限为负
余弦:第一,四象限为正,第二,三象限为负
正切:第一,三象限为正,第二,四象限为负
编辑本段相关概念
三角形与三角函数
1、正弦定理:在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)
2.第一余弦定理:三角形中任意一边等于其他两边以及对应角余弦的交叉乘积的和,即a=c cosB + b cosC
3.第二余弦定理:三角形中任何一边的平方等于其它两边的平方之和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc·cosA
4.正切定理(napier比拟):三角形中任意两边差和的比值等于对应角半角差和的正切比值,即(a-b)/(a+b)=tan[(A-B)/2]/tan[(A+B)/2]=tan[(A-B)/2]/cot(C/2)
5.三角形中的恒等式:
对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC
证明:
已知(A+B)=(π-C)
所以tan(A+B)=tan(π-C)
则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
整理可得
tanA+tanB+tanC=tanAtanBtanC
类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ
三角函数图像:
定义域和值域
sin(x),cos(x)的定义域为R,值域为〔-1,1〕
tan(x)的定义域为x不等于π/2+kπ,值域为R
cot(x)的定义域为x不等于kπ,值域为R
y=a·sin(x)+b·cos(x)+c 的值域为 [ c-√(a²+b²) , c+√(a²+b²)]
展开阅读全文