资源描述
2.4 绝对值
教学内容
2.4 绝对值
序号
教学时间
教具
教学目标
内容要求
知识与技能:1.使学生初步理解绝对值的概念。2.明确绝对值的代数定义和几何意义;会求一个已知数的绝对值;会在已知一个数的绝对值条件下求这个数。
过程与方法:学生自主预习,合作交流,小组探究,教师指导
情感态度与价值观:培养学生用数形结合思想解决问题的能力。
重 点
难 点
重点:让学生掌握求一个已知数的绝对值及正确理解绝对值的概念。
难点:对绝对值的几何意义、代数定义的导出、对“负数的绝对值是它的相反数”的理解。
教学流程
教 学 内 容
教法学法设计
导 入
预 习
展 示
总 结
1.在数轴上分别标出–5,3.5,0及它们的相反数所对应的点。
2.在数轴上找出与原点距离等于6的点。
3.相反数是怎样定义的?
发现、总结绝对值的定义:
我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值( absolute value )。记作|a|。
例如,在数轴上表示数―6与表示数6的点与原点的距离都是6,所以―6和6的绝对值都是6,记作|―6|=|6|=6。同样可知|―4|=4,|+1.7|=1.7。
2.试一试:你能从中发现什么规律? 由绝对值的意义,我们可以知道:
(1)|+2|= ,= ,|+8.2|= ; (2)|0|= ;(3)|―3|= ,|―0.2|= ,|―8.2|= 。
概括:通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?:
1. 一个正数的绝对值是它本身;2. 0的绝对值是0;3. 一个负数的绝对值是它的相反数。
即:①若a>0,则|a|=a ②若a<0,则|a|=–a;
③若a=0,则|a|=0; 或写成:。
3.绝对值的非负性:
引导学生从代数与几何两方面的特点出发回答相反数的定义。
通过对具体数的绝对值的讨论,并注意观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?:
学生分类讨论,归纳出数a的绝对值的一般规律
教学流程
教 学 内 容
教法学法设计
预 习
展 示
巩 固
总 结
练 习
总 结
作 业
由绝对值的定义可知:不论有理数a取何值,它的绝对值总是正数或0(通常也称非负数),绝对值具有非负性,即|a|≥0。
例1:求下列各数的绝对值:,,―4.75,10.5。
解:=;=;|―4.75|=4.75;|10.5|=10.5。
例2: 化简:(1); (2)。
解:(1) ; (2) 。
例3:计算:(1)|0.32|+|0.3|; (2)|–4.2|–|4.2|; (3)|–|–(–)。
求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到。在(3)中要注意区分绝对值符号与括号的不同含义。
解答:(1)0.62; (2)0; (3)。
课本:P31:1,2,3。
课堂小结:
1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑,从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。
2.求一个数的绝对值注意先判断这个数是正数还是负数
课本:P31:1,2,3。
分析:求一个数的绝对值必须先判断这个数是正数还是负数,然后由绝对值的性质得到。在(3)中要注意区分绝对值符号与括号的不同含义。
。
注意符号
学生总结
反
思
展开阅读全文