收藏 分销(赏)

应用时间序列分析习题答案.doc

上传人:pc****0 文档编号:8538530 上传时间:2025-02-17 格式:DOC 页数:15 大小:1.35MB
下载 相关 举报
应用时间序列分析习题答案.doc_第1页
第1页 / 共15页
应用时间序列分析习题答案.doc_第2页
第2页 / 共15页
点击查看更多>>
资源描述
第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图 2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平 ,序列不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下 (2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解: 3.2 解:对于AR(2)模型: 解得: 3.3 解:根据该AR(2)模型的形式,易得: 原模型可变为: =1.9823 3.4 解:原模型可变形为: 由其平稳域判别条件知:当,且时,模型平稳。 由此可知c应满足:,且 即当-1<c<0时,该AR(2)模型平稳。 3.5证明:已知原模型可变形为: 其特征方程为: 不论c取何值,都会有一特征根等于1,因此模型非平稳。 3.6 解:(1)错,。 (2)错,。 (3)错,。 (4)错, (5)错,。 3.7解: MA(1)模型的表达式为:。 3.8解法1:由,得,则 , 与对照系数得 ,故。 解法2:将等价表达为 展开等号右边的多项式,整理为 合并同类项,原模型等价表达为 当时,该模型为模型,解出。 3.9解:: 。 3.10解法1:(1) 即 显然模型的AR部分的特征根是1,模型非平稳。 (2) 为MA(1)模型,平稳。 解法2:(1)因为,所以该序列为非平稳序列。 (2),该序列均值、方差为常数, , 自相关系数只与时间间隔长度有关,与起始时间无关 所以该差分序列为平稳序列。 3.11解:(1),模型非平稳; 1.3738 -0.8736 (2),,,模型平稳。 0.6 0.5 (3),,,模型可逆。 0.45+0.2693i 0.45-0.2693i (4),,,模型不可逆。 0.2569 -1.5569 (5),模型平稳;0.7 ,模型可逆;0.6 (6),,,模型非平稳。 0.4124 -1.2124 ,模型不可逆;1.1。 3.12 解法1: ,, 所以该模型可以等价表示为:。 解法2: , 3.13解: 。 3.14 证明:已知,,根据模型Green函数的递推公式得: ,, 3.15 (1)成立 (2)成立 (3)成立 (4)不成立 3.16 解:(1), 已知AR(1)模型的Green函数为:, [9.9892-1.96*,9.9892+1.96*] 即[3.8275,16.1509] (2) [10.045-1.96×,10.045+1.96*] 即[3.9061,16.1839]。 3.17 (1)平稳非白噪声序列 (2)AR(1) (3) 5年预测结果如下: 3.18 (1)平稳非白噪声序列 (2)AR(1) (3) 5年预测结果如下: 3.19 (1)平稳非白噪声序列 (2)MA(1) (3) 下一年95%的置信区间为(80.41,90.96) 3.20 (1)平稳非白噪声序列 (2)ARMA(1,3)序列 (3)拟合及5年期预测图如下: 第四章习题答案 4.1 解: 所以,在中与前面的系数均为。 4.2 解 由 代入数据得 解得 4.3 解:(1) (2)利用且初始值进行迭代计算即可。另外, 该题详见Excel。11.79277 (3)在移动平均法下: 在指数平滑法中: 4.4 解:根据指数平滑的定义有(1)式成立,(1)式等号两边同乘有(2)式成立 (1)-(2)得 则。 4.5 该序列为显著的线性递增序列,利用本章的知识点,可以使用线性方程或者holt两参数指数平滑法进行趋势拟合和预测,答案不唯一,具体结果略。 4.6 该序列为显著的非线性递增序列,可以拟合二次型曲线、指数型曲线或其他曲线,也能使用holt两参数指数平滑法进行趋势拟合和预测,答案不唯一,具体结果略。 4.7 本例在混合模型结构,季节指数求法,趋势拟合方法等处均有多种可选方案,如下做法仅是可选方法之一,结果仅供参考 (1)该序列有显著趋势和周期效应,时序图如下 (2)该序列周期振幅几乎不随着趋势递增而变化,所以尝试使用加法模型拟合该序列:。(注:如果用乘法模型也可以) 首先求季节指数(没有消除趋势,并不是最精确的季节指数) 0.960722 0.912575 1.038169 1.064302 1.153627 1.116566 1.04292 0.984162 0.930947 0.938549 0.902281 0.955179 消除季节影响,得序列,使用线性模型拟合该序列趋势影响(方法不唯一):, (注:该趋势模型截距无意义,主要是斜率有意义,反映了长期递增速率) 得到残差序列,残差序列基本无显著趋势和周期残留。 预测1971年奶牛的月度产量序列为 得到 771.5021 739.517 829.4208 849.5468 914.0062 889.7989 839.9249 800.4953 764.9547 772.0807 748.4289 787.3327 (3)该序列使用x11方法得到的趋势拟合为 趋势拟合图为 4.8 这是一个有着曲线趋势,但是有没有固定周期效应的序列,所以可以在快速预测程序中用曲线拟合(stepar)或曲线指数平滑(expo)进行预测(trend=3)。具体预测值略。 第五章习题 5.1 拟合差分平稳序列,即随机游走模型 ,估计下一天的收盘价为289 5.2 拟合模型不唯一,答案仅供参考。 拟合ARIMA(1,1,0)模型,五年预测值为: 5.3 5.4 (1)AR(1), (2)有异方差性。最终拟合的模型为 5.5(1)非平稳 (2) 取对数消除方差非齐,对数序列一节差分后,拟合疏系数模型AR(1,3)所以拟合模型为 (3)预测结果如下: 5.6 原序列方差非齐,差分序列方差非齐,对数变换后,差分序列方差齐性。 第六章习题 6.1 单位根检验原理略。 例2.1 原序列不平稳,一阶差分后平稳 例2.2 原序列不平稳,一阶与12步差分后平稳 例2.3 原序列带漂移项平稳 例2.4 原序列不带漂移项平稳 例2.5 原序列带漂移项平稳,或者显著的趋势平稳。 6.2 (1)两序列均为带漂移项平稳 (2)谷物产量为带常数均值的纯随机序列,降雨量可以拟合AR(2)疏系数模型。 (3)两者之间具有协整关系 (4) 6.3 (1)掠食者和被掠食者数量都呈现出显著的周期特征,两个序列均为非平稳序列。但是掠食者和被掠食者延迟2阶序列具有协整关系。即为平稳序列。 (2)被掠食者拟合乘积模型:,模型口径为: 拟合掠食者的序列为: 未来一周的被掠食者预测序列为: Forecasts for variable x Obs Forecast Std Error 95% Confidence Limits 49 70.7924 49.4194 -26.0678 167.6526 50 123.8358 69.8895 -13.1452 260.8167 51 195.0984 85.5968 27.3317 362.8651 52 291.6376 98.8387 97.9173 485.3579 53 150.0496 110.5050 -66.5363 366.6355 54 63.5621 122.5322 -176.5965 303.7208 55 80.3352 133.4800 -181.2807 341.9511 56 55.5269 143.5955 -225.9151 336.9690 57 73.8673 153.0439 -226.0932 373.8279 58 75.2471 161.9420 -242.1534 392.6475 59 70.0053 189.8525 -302.0987 442.1094 60 120.4639 214.1559 -299.2739 540.2017 61 184.8801 235.9693 -277.6112 647.3714 62 275.8466 255.9302 -225.7674 777.4606 掠食者预测值为: Forecasts for variable y Obs Forecast Std Error 95% Confidence Limits 49 32.7697 14.7279 3.9036 61.6358 50 40.1790 16.3381 8.1570 72.2011 51 42.3346 21.8052 -0.4028 85.0721 52 58.2993 25.9832 7.3732 109.2254 53 78.9707 29.5421 21.0692 136.8722 54 106.5963 32.7090 42.4879 170.7047 55 66.4836 35.5936 -3.2787 136.2458 56 41.9681 38.6392 -33.7634 117.6996 57 46.7548 41.4617 -34.5085 128.0182 58 39.7201 44.1038 -46.7218 126.1619 59 44.9342 46.5964 -46.3930 136.2614 60 45.3286 48.9622 -50.6356 141.2928 61 43.8411 56.4739 -66.8456 154.5279 62 58.1725 63.0975 -65.4964 181.8413 6.4 (1)进出口总额序列均不平稳,但对数变换后的一阶差分后序列平稳。所以对这两个序列取对数后进行单个序列拟合和协整检验。 (2)出口序列拟合的模型为,具体口径为: 进口序列拟合的模型为,具体口径为: (3)和具有协整关系 (4)协整模型为: (5)误差修正模型为:
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服