资源描述
解析几何培优资料
1、已知椭圆.过点(m,0)作圆的切线I交椭圆G于A,B两点.
(I)求椭圆G的焦点坐标和离心率;
(II)将表示为m的函数,并求的最大值.
2、双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点.已知成等差数列,且与同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程
3、已知椭圆的左、右焦点分别为,,过的直线交椭圆于B,D两点,过的直线交椭圆于A,C两点,且,垂足为P.
(1)设P点的坐标为,证明:;
(2)求四边形ABCD的面积的最小值.
4、求F1、F2分别是横线的左、右焦点.
(Ⅰ)若r是第一象限内该数轴上的一点,,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于同的两点A、B,且∠ADB为锐角(其中O为作标原点),求直线的斜率的取值范围
5、若抛物线上总存在关于直线对称的两点,求的范围
6、椭圆的中心在坐标原点,焦点在轴上,该椭圆经过点且离心率为.
(1)求椭圆的标准方程;
(2)若直线与椭圆相交两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标
7、已知点是椭圆上任意一点,直线的方程为
(I)判断直线与椭圆E交点的个数;
(II)直线过P点与直线垂直,点M(-1,0)关于直线的对称点为N,直线PN恒过一定点G,求点G的坐标。
8、在直角坐标系中,以O为圆心的圆与直线:相切
(1)求圆O的方程
(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,求的取值范围
9、已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B两点,点P满足
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.
练习:
1、设圆C与两圆中的一个内切,另一个外切。
(1)求C的圆心轨迹L的方程;
(2)已知点M,且P为L上动点,求的最大值及此时点P的坐标.
2、设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.
(Ⅰ)若,求的值; (Ⅱ)求四边形面积的最大值
3、在平面直角坐标系中,直线:与椭圆:相交于、两点,且.⑴求的取值范围;
⑵若以为直径的圆经过点,求直线的方程.
4、试确定的取值范围,使得椭圆上有不同两点关于直线对称
5、已知动直线与椭圆C: 交于P、Q两不同点,且△OPQ的面积=,其中O为坐标原点.
(Ⅰ)证明和均为定值;
(Ⅱ)设线段PQ的中点为M,求的最大值;
(Ⅲ)椭圆C上是否存在点D,E,G,使得?若存在,判断△DEG的形状;若不存在,请说明理由.
6、平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值得关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。
1、在一张矩形纸片上,画有一个圆(圆心为O)和一个定点F(F在圆外).在圆上任取一点M,将纸片折叠使点M与点F重合,得到折痕CD.设直线CD与直线OM交于点P,则点P的轨迹为( )
A.双曲线 B.椭圆
C.圆 D.抛物线
2、平面α的斜线AB交α于点B,过定点A的动直线l与AB垂直,且交α于点C,则动点C的轨迹是( )
A.一条直线 B.一个圆
C.一个椭圆 D.双曲线的一支
3、如图,正方体ABCD-A1B1C1D1中,点P在侧面BCC1B1及其边界上运动,并且总保持AP⊥BD1,则动点P的轨迹是( )
A.线段B1C
B.线段BC1
C.BB1中点与CC1中点连成的线段
D.BC中点与B1C1中点连成的线段
4、如图,有公共左顶点和公共左焦点F的椭圆Ⅰ与Ⅱ的长半轴的长分别为a1和a2,半焦距分别为c1和c2,且椭圆Ⅱ的右顶点为椭圆Ⅰ的中心.则下列结论不正确的是( )
A.a1-c1=a2-c2 B.a1+c1>a2+c2
C.a1c2>a2c1 D.a1c2<a2c1
5、已知F1、F2为双曲线Cx2-y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|·|PF2|=( )
A.2 B.4
C.6 D.8
6、过双曲线-=1(a>0,b>0)的一个焦点F引它的渐近线的垂线,垂足为M,延长FM交y轴于E,若FM=ME,则该双曲线的离心率为( )
A.3 B.2
C. D.
7、已知过双曲线-=1右焦点且倾斜角为45°的直线与双曲线右支有两个交点,则双曲线的离心率e的取值范围是________.
8、若双曲线-=1(a>0,b>0)的两个焦点为F1,F2,P为双曲线上一点,且|PF1|=3|PF2|,则该双曲线离心率的取值范围是________.
9、若椭圆mx2+ny2=1(m>0,n>0)与直线y=1-x交于A,B两点,过原点与线段AB中点的连线的斜率为,则椭圆的离心率为( )
A. B.
C. D.
10、双曲线-y2=1(n>1)的两焦点为F1,F2,点P在双曲线上,且满足:|PF1|+|PF2|=2,则△PF1F2的面积是( )
A.1 B. C.2 D.4
1、已知椭圆.过点(m,0)作圆的切线I交椭圆G于A,B两点.
(I)求椭圆G的焦点坐标和离心率;
(II)将表示为m的函数,并求的最大值.
解:(Ⅰ)由已知得所以
所以椭圆G的焦点坐标为离心率为
(Ⅱ)由题意知,.
当时,切线l的方程,点A、B的坐标分别为此时
当m=-1时,同理可得当时,设切线l的方程为
由
设A、B两点的坐标分别为,则
又由l与圆
所以
由于当时,所以.
因为且当时,|AB|=2,所以|AB|的最大值为2.
2、双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点.已知成等差数列,且与同向.
(Ⅰ)求双曲线的离心率;
(Ⅱ)设被双曲线所截得的线段的长为4,求双曲线的方程
【解】:(1)设,,
由勾股定理可得:
得:,,
由倍角公式,解得则离心率.
(2)过直线方程为与双曲线方程联立
将,代入,化简有
将数值代入,有解得
最后求得双曲线方程为:
3、已知椭圆的左、右焦点分别为,,过的直线交椭圆于B,D两点,过的直线交椭圆于A,C两点,且,垂足为P.
(1)设P点的坐标为,证明:;
(2)求四边形ABCD的面积的最小值.
【解】:(1)椭圆的半焦距,由知点在以线段为直径的圆上,
故,所以,.
(2)(ⅰ)当的斜率存在且时,的方程为,代入椭圆方程,并化简得.设,,则
,,
;
因为与相交于点,且的斜率为.
所以,.
四边形的面积.
当时,上式取等号.
(ⅱ)当的斜率或斜率不存在时,四边形的面积.
综上,四边形的面积的最小值为.
4、求F1、F2分别是横线的左、右焦点.
(Ⅰ)若r是第一象限内该数轴上的一点,,求点P的作标;
(Ⅱ)设过定点M(0,2)的直线l与椭圆交于同的两点A、B,且∠ADB为锐角
(其中O为作标原点),求直线的斜率的取值范围
【解】:(Ⅰ)易知,,.
∴,.设.则
,又,
联立,解得,.
(Ⅱ)显然不满足题设条件.可设的方程为,设,.
联立
∴,
由
,,得.①
又为锐角,
∴
又
∴
∴.② 综①②可知,∴的取值范围是
5、若抛物线上总存在关于直线对称的两点,求的范围
解法一 (对称曲线相交法)
曲线关于直线对称的曲线方程为
如果抛物线上总存在关于直线对称的两点,则两曲线
与必有不在直线上的两个不同的交点(如图所示),从而可由
∵
∴
代入得 有两个不同的解,
∴
解法二 (对称点法)
设抛物线上存在异于于直线的交点的点,且关于直线的对称点也在抛物线上
则
必有两组解
(1)-(2)得
必有两个不同解
∵,∴有解
从而有 有两个不等的实数解
即 有两个不等的实数解
∴ ∵ ,∴
解法二 (点差法)
设抛物线上以为端点的弦关于直线对称,且以为中点是抛物线(即)内的点 从而有 由
(1)-(2)得 ∴
由
从而有
6、(12分)椭圆的中心在坐标原点,焦点在轴上,该椭圆经过点且离心率为.
(1)求椭圆的标准方程;
(2)若直线与椭圆相交两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
【分析】(1)根据椭圆的方程和简单几何性质,使用待定系数法即可;(2)要证明直线系过定点,就要找到其中的参数之间的关系,把双参数化为但参数问题解决,这只要根据直线与椭圆相交两点(不是左右顶点),且以为直径的圆过椭圆的右顶点即可,这个问题等价于椭圆的右顶点与的张角是直角。
【解析】(1)椭圆的标准方程为 (4分)
(2)设,得:
,,
(6分)
以为直径的圆过椭圆的右顶点,,
,
,,且均满足, (9分)
当时,的方程为,则直线过定点与已知矛盾
当时,的方程为,则直线过定点
直线过定点,定点坐标为 (12分)
【考点】圆锥曲线与方程。
【点评】直线系过定点时,必需是直线系中的参数为但参数,对于含有双参数的直线系,就要找到两个参数之间的关系把直线系方程化为单参数的方程,然后把当作参数的系数把这个方程进行整理,使这个方程关于参数无关的成立的条件就是一个关于的方程组,以这个方程的解为坐标的点就是直线系过的定点。
7、已知点是椭圆上任意一点,直线的方程为
(I)判断直线与椭圆E交点的个数;
(II)直线过P点与直线垂直,点M(-1,0)关于直线的对称点为N,直线PN恒
过一定点G,求点G的坐标。
解:(1)由消去并整理得……2分
,
…………5分
故直线与椭圆只有一个交点…………7分
(2)直线的方程为
即………………9分
设关于直线的对称点的坐标为
则 解得……10分
直线的斜率为
从而直线的方程为
即
从而直线恒过定点…………14分
8、在直角坐标系中,以O为圆心的圆与直线:相切
(1)求圆O的方程
(2)圆O与x轴相交于A、B两点,圆内的动点P使|PA|、|PO|、|PB|成等比数列,
求的取值范围
【解】:(1)依题设,圆的半径等于原点到直线的距离,
即 .得圆的方程为.
(2)不妨设.由即得.
设,由成等比数列,得
,即 .
由于点在圆内,故由此得.
所以的取值范围为
9、已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交于A、B两点,点P满足
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上.
解:(I)F(0,1),的方程为,代入并化简得
设则
由题意得所以点P的坐标为
经验证,点P的坐标为满足方程故点P在椭圆C上。
(II)由和题设知, PQ的垂直平分线的方程为
①
设AB的中点为M,则,AB的垂直平分线为的方程为
②
由①、②得的交点为。
故|NP|=|NA|。又|NP|=|NQ|,|NA|=|NB|,
所以|NA|=|NP|=|NB|=|MQ|,
由此知A、P、B、Q四点在以N为圆心,NA为半径的圆上 …………12分
练习:
1、设圆C与两圆中的一个内切,另一个外切。
(1)求C的圆心轨迹L的方程;
(2)已知点M,且P为L上动点,求的最大值及此时点P的坐标.
(1)解:设C的圆心的坐标为,由题设条件知
化简得L的方程为
(2)解:过M,F的直线方程为,将其代入L的方程得
解得
因T1在线段MF外,T2在线段MF内,故
,若P不在直线MF上,在中有
故只在T1点取得最大值2。
2、设椭圆中心在坐标原点,是它的两个顶点,直线与AB相交于点D,与椭圆相交于E、F两点.
(Ⅰ)若,求的值; (Ⅱ)求四边形面积的最大值
【解】:(Ⅰ)依题设得椭圆的方程为,
直线的方程分别为,. 2分
如图,设,其中,
D
F
B
y
x
A
O
E
且满足方程,
故.①
由知,得;
由在上知,得.
所以,
化简得,
解得或. 6分
(Ⅱ)根据点到直线的距离公式和①式知,点到的距离分别为,
. 9分
又,所以四边形的面积为
,
当,即当时,上式取等号.所以的最大值为. 12分
3、在平面直角坐标系中,直线:与椭圆:相交于、两点,且.⑴求的取值范围;
⑵若以为直径的圆经过点,求直线的方程.
⒙⑴解方程组……1分,得……2分
因为直线椭圆有两个交点,所以……4分,解得……5分,又因为,所以,,所以的取值范围是……6分.
⑵设、,由⑴得,……7分,
以为直径的圆经过点,所以……8分,……9分,由……10分,得
……12分,解得……13分,所以直线的方程是
或……14分.
4、试确定的取值范围,使得椭圆上有不同两点关于直线对称
解 设椭圆上以为端点的弦关于直线对称,且以为中点是椭圆内的点
从而有
由
(1)-(2)得
∴
由
由在直线上
从而有
5、已知动直线与椭圆C: 交于P、Q两不同点,且△OPQ的面积=,其中O为坐标原点.
(Ⅰ)证明和均为定值;
(Ⅱ)设线段PQ的中点为M,求的最大值;
(Ⅲ)椭圆C上是否存在点D,E,G,使得?若存在,判断△DEG的形状;若不存在,请说明理由.
(I)解:(1)当直线的斜率不存在时,P,Q两点关于x轴对称,
所以
因为在椭圆上,
因此 ①
又因为
所以 ②
由①、②得
此时
(2)当直线的斜率存在时,设直线的方程为
由题意知m,将其代入,得
,
其中
即 …………(*)
又
所以
因为点O到直线的距离为
所以
又
整理得且符合(*)式,
此时
综上所述,结论成立。
(II)解法一:
(1)当直线的斜率存在时,
由(I)知
因此
(2)当直线的斜率存在时,由(I)知
所以
所以,当且仅当时,等号成立.
综合(1)(2)得|OM|·|PQ|的最大值为
解法二:
因为
所以
即当且仅当时等号成立。
因此 |OM|·|PQ|的最大值为
(III)椭圆C上不存在三点D,E,G,使得
证明:假设存在,
由(I)得
因此D,E,G只能在这四点中选取三个不同点,
而这三点的两两连线中必有一条过原点,
与矛盾,
所以椭圆C上不存在满足条件的三点D,E,G.
6、平面内与两定点,连续的斜率之积等于非零常数的点的轨迹,加上、两点所成的曲线可以是圆、椭圆成双曲线.
(Ⅰ)求曲线的方程,并讨论的形状与值得关系;
(Ⅱ)当时,对应的曲线为;对给定的,对应的曲线为,设、是的两个焦点。试问:在撒谎个,是否存在点,使得△的面积。若存在,求的值;若不存在,请说明理由。
本小题主要考查曲线与方程、圆锥曲线等基础知识,同时考查推理运算的能力,以及分类与整合和数形结合的思想。(满分14分)
解:(I)设动点为M,其坐标为,
当时,由条件可得
即,
又的坐标满足
故依题意,曲线C的方程为
当曲线C的方程为是焦点在y轴上的椭圆;
当时,曲线C的方程为,C是圆心在原点的圆;
当时,曲线C的方程为,C是焦点在x轴上的椭圆;
当时,曲线C的方程为C是焦点在x轴上的双曲线。
(II)由(I)知,当m=-1时,C1的方程为
当时,
C2的两个焦点分别为
对于给定的,
C1上存在点使得的充要条件是
②
①
由①得由②得
当
或时,
存在点N,使S=|m|a2;
当
或时,
不存在满足条件的点N,
当时,
由,
可得
令,
则由,
从而,
于是由,
可得
综上可得:
当时,在C1上,存在点N,使得
当时,在C1上,存在点N,使得
当时,在C1上,不存在满足条件的点N。
22
用心 爱心 专心
展开阅读全文