收藏 分销(赏)

车辆工程毕业论文--紧凑型轿车设计.pdf

上传人:鱼** 文档编号:821695 上传时间:2024-03-25 格式:PDF 页数:31 大小:1.29MB
下载 相关 举报
车辆工程毕业论文--紧凑型轿车设计.pdf_第1页
第1页 / 共31页
车辆工程毕业论文--紧凑型轿车设计.pdf_第2页
第2页 / 共31页
车辆工程毕业论文--紧凑型轿车设计.pdf_第3页
第3页 / 共31页
亲,该文档总共31页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、紧凑型轿车的设计-制动系设计第 1 页 共 31 页1CS1 绪论1.1 课题背景及目的汽车的普及伴随着能源消耗的增多,而如今的生活,汽车已经是人们日常生活离不开的必要工具。在大力节约能源的背景下,对汽车的节能要求随之增高。紧凑型轿车的出现正好适应时代的发展,排量最多只有 2.0 紧凑型轿车相比其他类型的家用轿车无论从节能还是其他费用上都表现处明显的经济型,为了适应时代的要求,特此提出了紧凑型轿车的设计说明的毕业设计题目。要求在同组人员互相协作的基础上,完成制动系统的开发设计。旨在培养综合运用所学专业及专业基础理论知识进行产品系统开发设计的实践工作能力。要求在收集和分析有关数据的基础上,合理确

2、定紧凑型轿车的制动方式及系统布置方案,进行主要零部件的强度和疲劳寿命设计计算,绘制系统装配图及零部件图纸,编写设计计算说明书。1.2 国内外研究现状从汽车诞生时起,车辆制动系统在车辆的安全方面就扮演着至关重要的角色。近年来,随着车辆技术的进步和汽车行驶速度的提高,这种重要性表现得越来越明显。众多的汽车工程师在改进汽车制动性能的研究中倾注了大量的心血。制动装置需要转换和吸收的动能,与汽车制动初速度的平方和总质量成正比;其需要产生的制动力则与汽车总质量成正比,与制动初速度相对来说关系不大。在汽车的发展过程中,速度和总质量两个参数始终处于不断攀高的状态,这就要求制动装置在更短的时间内吸收越来越大的能

3、量,并产生接近车轮滑移界限的制动力。第二次世界大战后由于汽车技术的迅速发展和道路条件的不断改善,汽车速度普遍提高得很快。另一方面由于道路行车密度日益增大,交通事故频繁发生,引起了公众对道路交通安全的密切关注。这些因素对制动装置提出了更加苛刻的要求,促使它作出相应的改进。例如,为了吸收高速制动时的汽车动能,出现了以热效能较稳定的钳盘式制动器取代传统的鼓式制动器的趋势;为了产生足够的地面制动力并减轻操作强度,逐进淘汰了人力制动,代之以伺服制动和动力制动;为了进一步提高制动装置的可靠性,在行车和驻车制动系之外增设了应急制动系。随着电子技术的飞跃发展,防抱死制动系统(ABS)在技术上已经成熟,正在汽车

4、上普及。它能有效地防止制动时由于车轮抱死而使汽车失去方向稳定性或转向能力的危第 2 页 共 31 页2险,并缩短制动距离,从而提高了高速行驶的安全性。近年来出现了集 ABS 功能和其他扩展功能于一体的电子控制制动系统(EBS)和电子制动助力系统(BAS)。前一种系统适用于重型汽车和汽车列车,它以电子控制方式代替气压控制方式,可根据制动踏板行程及车轮载荷和制动摩擦片磨损情况调节各车轮制动气室压力。这样不但可以大大减少制动反应时间、缩短制动距离,还可以使制动力分配更加合理。后一种系统适用于轿车,在出现紧急状况而驾驶员未能及时对制动踏板施加足够大的力时,能自动加以识别并触发电磁阀,使真空助力器在极短

5、时间内实现增强作用,从而可显著缩短制动距离。为了防止汽车发生追尾碰撞事故,美、日、欧各国都在致力于车距报警和防追尾碰撞系统的研究。该系统用激光雷达或微波雷达对前方车辆和障碍物进行监测,若检测出实际车距小于安全车距,就会向驾驶员发出报警,若驾驶员仍未作出反应,就会自动对汽车施行制动。1.3 课题研究方法根据课题内容,任务要求深入了解汽车制动系统的构造及工作原理;并收集相关紧凑型轿车制动系统设计资料;参考现有研究成果,并进行深入的学习和分析,借鉴经验;同时学习有关汽车零部件设计准则;充分学习和利用画图软件,并再次学习机械制图,画出符合标准的设计图纸,通过自己的研究分析;发挥自己的设计能力并通过试验

6、最终确定紧凑型轿车制动系统设计方案。1.4 本设计应解决的难点(1)确定制动系各参数,分析其制动性能;(2)制动器的设计计算;(3)液压制动驱动机构的设计计算;(4)制动系统图纸设计。第 3 页 共 31 页32 总 体 设 计 方 案汽车的制动性是汽车的主要性能之一。制动性直接关系到行使安全性,是汽车行使的重要保障。随着高速公路迅速的发展和车流密度的日益增大,出现了频繁的交通事故。因此,改善汽车的制动性始终是汽车设计制造和使用部门的主要任务。制动系的功用是使汽车以适当的减速度降速行使直至停车;在下坡行使时,使汽车保持适当的稳定车速;使汽车可靠地停在原地或坡道上。制动系至少应有两套独立的制动装

7、置,即行车制动装置和驻车制动装置。前者用来保证前两项功能,后者用来保证第三项功能。除此之外,有些汽车还设有应急制动、辅助制动和自动制动装置。设计汽车制动系应满足如下主要要求:(1)应能适应有关标准和法规的规定。(2)具有足够的制动效能,包括行车制动效能和驻车制动效能。行车制动能力是用一定制动初速度下的制动减速度和制动距离两项指标来评定的;驻坡能力是以汽车在良好路面上能可靠地停驻的最大坡度来评定的。详见 QC/T239-1997。(3)工作可靠。行车制动装置至少有两套独立的驱动制动器的管路,当其中一套管路失效时,另一套完好的管路应保证汽车制动能力不低于没有失效时规定值的 30%。行车和驻车制动装

8、置可以有共同的制动器,而驱动机构应各自独立。行车制动装置都用脚操纵,其他制动装置多为手操纵。(4)制动效能的热稳定性好。具体要求详见 QC/T582-1999。(5)制动效能的水稳定性好。(6)在任何速度下制动时,汽车都不应丧失操纵稳定性和方向稳定性。有关方向稳定性的评价标准,详见 QC/T239-1997。(7)制动踏板和手柄的位置和行程符合人-机工程学要求,即操作方便性好,操纵轻便、舒适、能减少疲劳。(8)作用滞后的时间要尽可能短,包括从制动踏板开始动作至达到给定制动效能水平所需的时间和从放开踏板至完全解除制动的时间。(9)制动时不产生振动和噪声。(10)转向装置不产生运动干涉,在车轮跳动

9、或转向时不会引起自行制动。第 4 页 共 31 页4(11)应有音响或光信号等警报装置,以便及时发现制动驱动机件的故障和功能失效。(12)用寿命长,制造成本低;对摩擦材料的选择也应考虑到环保要求,应力求减少制动时飞散到大气中的有害人体的石棉纤维。(13)损后,应有能消除因磨损而产生间隙的机构,且调整间隙工作容易,最好设置自动调整间隙机构。防止制动时车轮被抱死有利于提高汽车在制动过程中的转向操纵性和方向稳定性,缩短制动距离,所以近年来防抱死制动系统(ABS)在汽车上得到了很快的发展和应用。此外,由于含有石棉的摩擦材料存在石棉有公害问题,已被逐渐淘汰,取而代之的各种无石棉材料相继研制成功本次设计的

10、紧凑型轿车采用前盘后鼓,液压制动,II 式(前后式)双回路制动控制系统.采用真空助力器和 ABS 系统.其中鼓式制动器采用一般常用的领从蹄式,为一个自由度.且带有灰铸铁内鼓筒的铸铝合金制动鼓。制动鼓内径尺寸参照专业标准QC/T309-1999制动鼓工作直径及制动蹄片宽度尺寸系列选取。摩擦衬片宽度尺寸系列参照 QC/T309-1999。盘式制动器采用浮动钳盘式.制动盘直径取轮辋直径的 70%。通风式制动盘厚度取 25mm。具体的制动系统设计计算过程依据汽车设计教材进行。2.1 制动能源的选择经过同多种类型的车辆比较,参考汽车工程手册,如下制动能源:表表 2-12-1制动能源比较制动能源比较供能装

11、置型式气压伺服制动系制动能源驾驶员体力与发动机动力工作介质空气型式液压制动系传能装置工作介质制动液真空伺服制动系是由发动机驱动的空气压缩机提供压缩空气作为动力源,伺服气压一般可达 0.050.07MPa。真空伺服制动系多用于总质量在 1.11.35t 以上的轿车及装载质量在 6t 以下的轻、中型载货汽车上;气压伺服制动系则广泛用于装载质量为612t 的中、重型货车以及极少数高级轿车上。液压制动用于行车制动装置。液压制动的优点是:作用滞后时间短,(0.10.3s);第 5 页 共 31 页5工作压力高(可达 1020MPa),因而轮缸尺寸小,可以安装在制动器内部,直接作为制动蹄的张开机构(或制动

12、块的压紧机构),而不需要制动臂等传动件,使之结构简单,质量小;机械效率较高(液压系统有自润滑作用)。液压制动的主要缺点是:过度受热后,部分制动液汽化,在管路中形成气泡,严重影响液压传输,使制动系统的效能降低,甚至完全失效。液压制动广泛应用在乘用车和总质量不大的商用车上2.2 驻车制动系制动系统用于使汽车可靠而无时间限制地停驻在一定位置甚至斜坡上,也有助于汽车在斜坡上起步。驻车制动系统应采用机械式驱动机构而不用液压或气压式,以免其产生故障。通过类比采用:手动驻车制动操纵杆、驻车制动杠杆作用于后轮。用后轮制动兼用驻车制动器。后轮驻车制动:轮缸或轮制动器,(对领丛蹄制动器,只需附加一个驻车制动推杆和

13、一个驻车杠杆即可)使用驻车制动时,由人搬动驻车制动操纵杆,通过操纵缆绳。平衡臂和拉杆(拉绳)拉动驻车制动杠杆使两蹄张开。2.3 行车制动系制动系统用作强制行使中的汽车减速或停车,并使汽车在下短坡时保持适当的稳定车速。其驱动机构多采用双回路或多回路结构,以保证其工作可靠。目前,盘式制动器已广泛应用于轿车,但除了在一些高性能轿车上用于全部车轮以外,大都只用作前轮制动器,而与后轮的鼓式制动器配合,以期汽车有较高的制动时的方向稳定性。在货车上,盘式制动器也有采用,但离普及还有相当距离。四轮轿车在制动过程中,由于惯性的作用,前轮的负荷通常占汽车全部负荷的 70%-80%,前轮制动力要比后轮大,后轮起辅助

14、制动作用,因此轿车生产厂家为了节省成本,就采用前盘后鼓的制动方式。2.4 制动管路的布置及原理II 式(前后式):前、后轮制动管路各成独立的回路系统,即一轴对一轴的分路型式,第 6 页 共 31 页6一条回路连接前桥(轴)车轮制动器,另一条回路连接后桥(轴)车轮制动器,如图 1a)所示。前桥车轮制动器与后桥车轮制动器各用一个回路。其特点是管路布置最为简单,可与传统的单轮缸(或单制动气室)鼓式制动器相配合,成本较低。在各类汽车上都有采用。通过分析,II 式(前后式)制动器结构简单,成本较低,因此CS 紧凑型轿车采用的就是II 式(前后式)双回路制动系。2.4.1 制动管路的布置示意图(II 型)

15、1.前轮制动器 2.制动钳 3.制动管路 4.制动踏板机构 5.制动主缸 6.制动轮缸 7.后轮制动器图 2-1 液压制动装置示意图2.4.2 制动原理和工作过程图 2-2 制动系统工作原理要使行使中的汽车减速,驾驶员应踩下制动踏板,通过推杆和主缸活塞,使主缸内的油液在一定压力下流入轮缸,并通过两个轮缸活塞推动两制动蹄绕支撑销转动,上端向两边分开而其摩擦片压紧在制动鼓的内圆面上。这样,不旋转的制动蹄就对旋转的制动鼓作用一个摩擦力矩,其方向与车轮旋转方向相反。制动鼓将该力矩传到车轮后,由于车轮与路面间有附着作用,车轮对路面作用一个向前的周缘力,同时路面也对车轮作第 7 页 共 31 页7用一个向

16、后的反作用力,即制动力。制动力由车轮经车桥和悬架传给车架和车身,迫使整个汽车产生一定的减速度。制动力越大,制动减速度越大。当放开制动踏板时,复位弹簧即将制动蹄拉回复位,摩擦力矩和制动力消失,制动作用即行终止。2.5 制动器的结构方案分析制动器主要有摩擦式、液力式和电磁式等几种形式。目前广泛使用的是摩擦式制动器。摩擦式制动器按摩擦副结构形式不同,可分为鼓式,盘式和带式三种。带式制动器只用作中央制动器,本文不做介绍。鼓式制动器形式的选用:领丛蹄式制动器的效能和效能稳定性,在各式制动器中居中游;前进、倒退行使的制动效果不变;结构简单,成本低;便于附装驻车制动驱动机构;易于调整蹄片与制动鼓之间的间隙。

17、但领丛制动器也有两蹄片的压力不等(在两蹄上的摩擦衬片面积相等的条件下),因而两蹄片磨损不均匀、寿命不同的缺点。此外,因只有一个轮缸,两蹄必须在同一驱动回路下工作。鉴于以上的优点,本设计采用液压驱动的,由定位销定位的一个自由度的非平衡式的领丛蹄式制动器。盘式制动器的选用:按摩擦副中固定元件的结构不同,盘式制动器可分为钳盘式和全盘式两类。钳盘式根据制动钳结构的不同,分笃式和浮动钳式。对两中类型进行比较,浮动钳盘式具有如下优点:在盘的内侧有液压缸,故轴向尺寸小,制动器能进一步靠近轮毂;没有跨越制动盘的油道或油管,家之液压缸;冷却条件好,所以制动液汽化的可能性小;成本低。所以,本设计采用浮动钳式盘式制

18、动器。与鼓式制动器比较,盘式制动器有如下优点:(1)热稳定性好,因无自行增力作用,衬块摩擦表面压力分布较鼓式制动器更为均匀。此外,制动鼓在受热膨胀后,工作半径增大,使其只能与蹄的中部接触,从而降低了制动效能。因此,前轮采用盘式制动器,汽车制动时不易跑偏。(2)水稳定性好。制动衬块对盘的单位压力高,易于将水挤出,因而进水后效能降低不多;又由于离心力及衬块对盘的擦拭作用,出水后只需经一、二次制动即能恢复正常。鼓式制动器则需经十余次制动方能恢复。第 8 页 共 31 页8(3)制动力矩与汽车运动方向无关。(4)易于构成双回路制动系,使系统具有较高的可靠性和安全性。(5)尺寸小、质量小、散热良好。(6

19、)压力在制动衬块的分布比较均匀,故衬块磨损也均匀。(7)更换衬块简单容易。(8)衬块与制动盘之间的间隙小(0.050.15mm),从而缩短了制动协调时间。(9)易于实现间隙自动调整。盘式制动器的主要缺点:(1)难以完全防止污尘和锈蚀。(2)兼作驻车制动器时,所需附加的手驱动机构比较复杂。(3)在制动驱动机构中必须装用助力器。(4)因为衬块工作面积小,所以磨损快,使用寿命低,叙需用高材质的衬块。经过对不同制动器优、缺点的比较,参考同类型车,本设计采用前盘(浮动钳式)后鼓(支承销领丛蹄式)的制动系统。第 9 页 共 31 页93 制动系主要参数确定3.1 CS 紧凑型轿车的基本参数表表 3-13-

20、1 制动系主要参数制动系主要参数汽车质量前轴轴荷分配后轴质心高度轴距前制动器后制动器空载1077kg570kg507kghg0=0.52m2450 m盘式鼓式满载1447kg720kg727kgHg1=0.57m3.2 同步附着系数的确定一般汽车根据前、后轮制动力的分配、载荷情况及道路附着系数和坡度等因素,当制动力足够时,制动过程出现前后轮同时抱死拖滑时附着条件利用最好。任何附着系数路面上前后同时抱死的条件为1(=0.8):Ff 1Ff1 Ff 2G(3-1)Ff 2L2hgL1hg(3-2)式中:G-汽车重力;Ff 1-前制动器制动力;Ff 2-后制动器制动力;L1-质心到前轴的距离;L2-

21、质心到后轴的距离;第 10 页 共 31 页10得:Ff1=7788.2NFf 2=3556.3N一般常用制动器制动力分配系数来表示分配比例Ff1 0.686Ff 2空载条件:Ff1 5406.4NFf 2 3037.3NFf 1 0.64Ff 2前、后制动器制动力分配的比例影响到汽车制动时方向稳定性和附着条件利用程度。要确定值首先就要选取同步附着系数0。一般来说,我们总是希望前轮先抱死(0)。根据有关文献推荐以及我国道路条件,车速不高,所以本车型选取0 0.6。为保证汽车制动时的方向稳定性和有足够的附着系数利用率,ECE 的制动法规规定,在各种载荷条件下,轿车在0.15q0.8,其他汽车在0

22、.15q0.3 的范围内,前轮应先抱死;在车轮尚未抱死的情况下,在0.150.8 的范围内,必须满足q 0.10.85(0.2)3.3 制动器最大制动力矩确定应合理地确定前、后轮制动器的制动力矩,以保证汽车有良好的制动效能和稳定性。最大制动力矩是在汽车附着质量被完全利用的条件下获得的,这时制动力与地面作用于车轮的法向力成正比。计算公式如下Tf2maxG(L1 qhg)reL(3-3)Tf1m ax1 Tf2m ax(3-4)式中该车所能遇到的最大附着系数 0.8;q制动强度(q reL1)L1(0)hg车轮有效半径。第 11 页 共 31 页11q L11.2250.8故q 0.73L2(0)

23、1.225(0.80.6)0.5714479.8(1.2250.730.57)0.80.3 1123.82.450.687Tf 1man10.6871123.8 2455.2Tf 2man3.4 制动器的主要参数选择在有关的整车总布置参数和制动器的结构形式确定以后,就可以参考已有的同类型、同等级汽车的同类制动器,对制动器的结构参数进行初选。3.4.1 鼓式制动器的主要参数选择3.4.1.1 制动鼓直径 D当输出力一定时,制动鼓的直径越大,制动力矩也越大,散热性能也越好。但止境的尺寸受到轮辋内径的限制,而且直径的增大也使制动鼓的质量增大,使汽车的非悬挂质量增大,而不利于汽车的行驶平顺性。制动鼓与

24、轮辋之间应有相当的间隙,此间隙一般不小于 2030mm,以利于散热通风,也可避免由于轮辋过热而损坏轮胎。由此间隙要求及轮辋的尺寸及渴求得制动鼓直径的尺寸。另外,制动鼓直径与轮辋直径之比为D Dr 0.70 0.83根据 QC/T309-1999制动鼓工作及制动蹄片宽度尺寸系列取D=300mm R=150mm3.4.1.2 摩擦衬片宽度 b 和包角摩擦衬片的包角可在 9001200范围内选取,试验表明,摩擦衬片包角在 9001200时,磨损最小,制动鼓温度也最低,且制动效能最高。再减小包角虽有利于散热,但由于单位压力过高将加速磨损。包角一般不宜大于1200,因过大不仅不利于散热,而且易使制动作永

25、不平顺,甚至可能发生自锁。摩擦衬片宽度较大可以降低单位压力、减小磨损,但过大则不易保证与制动鼓全面接触。通常是根据在紧急制动时使单位压力不超过 2.5 MPa的条件来选择衬片宽度的。设计时应尽量按摩擦片的产品规格选择宽度值。另外,根据国外统计资料可知,单个鼓式制动器总的摩擦衬片面积随汽车总质量的增大而增大。而单个摩擦衬片的面积又决定与制动鼓的半径,衬片宽度及包角。即1Ap Rb(3-5)式中,包角以弧度为单位,当面积、包角、半径确定后,由上式可以初选衬片宽度第 12 页 共 31 页12的尺寸。制动器各蹄摩擦衬片总面积越大,制动时产生的单位面积正压力越小,从而磨损也越小。a、参考同类汽车选取,

26、一般 b/D=0.160.26,取 0.25,故 b=75mmb、取包角100100Ap Rb=15075=19625mm2180c、摩擦衬片起始角0,一般将衬片布置在制动蹄的中央,即令:0 9002 40有时为了适应单位压力的分布情况,将衬片相对于最大压力点对称布置,以改善制动效能和磨损的均匀性。3.4.1.3 制动器中心到张开力 P 作用线和距离 e在保证轮缸能够布置于制动鼓内的条件,应使距离 e 尽可能大,以提高制动效能。初步设计可取 e=0.8R,故 e=120mm。3.4.1.4 制动蹄支承销连线到制动器中心值 aa 值越大则制动效果越好,初步设计取 a=0.8R,a 和 e 相同3

27、.4.1.5 制动蹄支销中心的坐标位置是 k 与 c制动蹄支销中心的坐标尺寸 k 是应尽可能地小,以不使两制动蹄端毛面相碰擦为准,使尺寸 c 尽可能地大,设计可定 c=0.8R=120 mm,k=25mm。3.4.1.6 摩擦片摩擦系数f 0.35选择摩擦片时不仅希望其摩擦系数要高些,更要求其热稳定性要好,受温度和压力的影响要小。不能单独地追求摩擦材料的高摩擦系数,应提高对摩擦系数的稳定性和降低制动器对摩擦系数偏离正常值的敏感性要求,后者对蹄式制动器是非常重要的。各种制动器用摩擦材料的摩擦系数的稳定值约为 0.30.5 之间,少数可达 0.7。一般说来,摩擦系数越高的材料,其耐磨性越差。所以在

28、制动器设计时并非一定要追求高摩擦系数的材料。当前国产的摩擦片材料温度低于 250 度时,保持摩擦系数在 0.30.4 已无大问题。因此,在假设的理想条件下计算制动器的制动力矩,取0.3 可使计算结果接近世纪。另外,在选择摩擦材料时应尽量采用减少污染和对人体无害的材料。第 13 页 共 31 页133.4.2 盘式制动器的主要参数选择3.4.2.1 制动盘直径 D制动盘直径 D 应尽量取大些,这样,制动盘的有效半径增大,可以减小制动钳的夹紧力,降低衬块的单位压力和工作温度。通常 D=0.700.79Dr,本车总质量不大于 2吨,取上限,即 D=0.75Dr=285.6mm3.4.2.2 制动盘厚

29、度 h制动盘厚度对制动盘的质量和温升有影响。为使质量小些,厚度不宜太大,为了减少温升,厚度又不宜过小。因此,参考同类型车,取为 25mm,通风式,增大散热。3.4.2.3 摩擦衬块外半径R2和内半径R1参考同类车型,选取摩擦衬块的内外半径分别为:R1 90mm,R2120mm3.4.2.4 制动衬块工作面积 A在确定盘式制动器制动衬块的工作面积时,根据制动衬快单位面积占有的汽车质量,推荐在 1.63.5kg/cm2,此处取为 2kg/cm2,可得 A=1447kg2kg/cm2 723.5cm2第 14 页 共 31 页144制动器的设计与计算4.1 制动器摩擦面的压力分布规律从前面的分析可知

30、,制动器摩擦材料的摩擦系数及所产生的摩擦力对制动器因数有很大的影响。掌握制动蹄表面的压力分布规律,有助于正确分析制动器因数。在理论上对制动蹄摩擦面的压力分布规律作研究时,通常作如下一些假定:(1)制动蹄、鼓为绝对刚性;(2)在外力作用下,便行仅发生在摩擦衬片上;(3)压力与变形符合胡克定律。对于绕支承销转动的制动蹄,制动蹄片上的压力符合正弦分布。4.2 单个制动器制动力矩计算4.2.1 鼓式制动器制动力矩计算4.2.1.1 制动蹄的效能因数制动器效能因数,表示制动器的效能,其实质是制动器在单位输入压力或力的作用下所能输出的力或力矩,用于评比不同结构形式的制动器的效能1hf领蹄:BFT1=()=

31、1.077a1 fRcahf从蹄:BFT2=()=0.519Rca1 fa则 BF=BFT1+BFT2=1.5964.2.1.2 同一制动器各蹄产生的制动力矩在计算鼓式制动器时,必须建立制动蹄对制动鼓的压紧力与所产生的制动力矩之间的关系,其计算公式如下1对于领蹄:Fx PmaxbR(2sin2sin2)/4(4-1)Fy PmaxbR(cos2cos2)/4(4-2)30 40arctan120 25.9其中:Pmax为压力分布不均匀时蹄片上的最大压力。第 15 页 共 31 页15 arctanFyFx arctan(cos2cos2)/(2sin2sin2)10.1R1 4R(coscos

32、)/(cos2cos2)2(2sin2sin2)2167.94.2.2 盘式制动器制动力矩计算现假设衬块的摩擦表面与制动盘接触良好,且各处的单位压力分布均匀,则盘式制动器的制动力矩计算公式为2M 2 fF0R (4-3)其中:其中:单个制动器的制动力矩M M1/2=1222.6f-摩擦系数F0-单侧制动块对制动盘的压紧力 R-作用半径(摩擦衬块的作用半径 R=R1 R22105mm)F0M1222.62 fR20.350.105166344.3 应急制动和驻车制动的制动力矩计算4.3.1 应急制动应急制动时,后轮一般都将抱死滑移,故后桥制动力为1FB2F2magL1L h14479.81.22

33、50.8.80.57 4782.2g2.45 0此时所需的后桥制动力矩为1FmagL1B 2reL hre=4782.20.3=1434.7g式中,mag-汽车满载总质量与重力加速度的乘积 L-轴距L1-汽车质心到前轴的距离hg-汽车质心高度第 16 页 共 31 页16F2-路面对后桥的法向反力-附着系数re-车轮有效半径4.3.2 驻车制动通过受力分析,可以得出汽车在上、下坡停驻时的后桥附着力分别为1上坡F2 mag(L1LcoshgLsin)(4-4)下坡FL1hg2 mag(LcosLsin)(4-5)汽车停驻的最大坡度可根据后轴上的附着力与制动力相等求得1:满载:上坡11 arcta

34、nLL h 26.1g下坡2 arctanL1L h18.7g空载:上坡1 arctanL1h 27.1L g下坡L12 arctanLh19.9g满载时,上下坡后桥附着力为上坡F2 mag(L1hgLcosLsin)4878.1下坡Fg(L12 maLcoshgLsin)4812.9空载时,上下坡后桥附着力分别为上坡FmL1hg2ag(LcosLsin)3970.6下坡F2 mag(L1LcoshgLsin)3630.8第 17 页 共 31 页174.4 制动衬片的耐磨性计算摩擦衬片(块)的磨损,与摩擦副的材质、表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此,在理论上要精确计

35、算磨损性能是困难的。但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素。汽车的制动过程是将其机械能的一部分转变为热能耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动能的任务。此时由于在短时间内热量来不及逸散到大气中,致使制动器的温度升高,此即所谓的制动器的能量负荷。能量负荷越大,摩擦衬片(块)的磨损越严重。制动器的能量负荷以其比能量耗散率作为评价指标。它表示单位摩擦面积在单位时间内耗散的能连。单位为W mm2。4.4.1 双轴汽车的制动器的比能量耗散率分别为1前轮e1ma(1222)4tA1 (4-6)后轮e2ma(1222)(1)4tA2 (

36、4-7)式中,ma-汽车总质量;-汽车回转质量转换系数;1、2-制动初速度和减速度;J-制动减速度;t-制动时间;A1、A2-前后制动衬片(块)的摩擦面积;-制动力分配系数双轴汽车的制动器的比能量耗散率分别为:前轮e1ma(1222)4tA1 (4-8)后轮e2ma(1222)(1)4tA2 (4-9)在紧急制动到停车的情况下,2=0,并可认为=1,对于乘用车,制动速度第 18 页 共 31 页18v1100km(27.8m),故hsmav12144727.820.64 0.52 6.0we12mm4tA144.7372530mav12(1)144727.820.361.08 1.8we1mm

37、24tA144.7319625据有关文献推荐,鼓式制动器的比能量耗散率以不大于1.8w/mm2为宜,盘式制动器的比能量耗散率应不大于 6.0w/mm2,计算时取减速度 j=0.6g。4.4.2 比摩擦力f0磨损特性指标也可用衬片(块)的比摩擦力即单位摩擦面积的摩擦力来衡量1。f0越大,则磨损越严重。前轮f01M1R1A1M2R2A2 (4-10)后轮f02 (4-11)式中,M-单个制动器的制动力矩;R-制动鼓半径(或衬块平均半径R);A-单个制动器的衬片(块)摩擦面积前轮f01M1R1A1M2R2A21222.6 0.161Nmm20.105723.51222.6N 0.415N2 0.48

38、2mmmm0.1519625后轮f02第 19 页 共 31 页195 液压制动驱动机构的设计计算制动驱动机构用于将驾驶员或其他动力源的制动作用力传给制动器,使之产生制动力矩。5.1 制动驱动机构的形式制动驱动驱动机构将来自驾驶员或其他力源的力传给制动器,使之产生制动力矩。根据制动力源的不同,制动驱动机构一般可分为简单制动、动力制动和伺服制动三大类。通过对各种驱动机构不同形式优缺点的比较,本设计采用真空助力的伺服驱动机构。伺服制动系是在人力液压制动系中增加由其他能源提供的助力装置,使人力与动力并用。在正常情况下,其输出工作压力主要由动力伺服系统产生,而在伺服系统失效时,仍可由人力驱动液压系统产

39、生一定的制动力。因此,在 1.6L 以上的乘用车到各种商用车。都广泛采用伺服制动。真空伺服制动系是利用发动机进气管中节气门后的真空度(负压,一般可达0.050.07MPa)作动力源。按照助力特点,伺服制动系又可分为助力式和增压式两种。助力式伺服制动系如图 2-1 所示,伺服气室位于制动踏板与制动主缸之间,其控制阀直接由踏板通过推杆操纵,因此又称为直动式伺服制动系。司机通过踏板直接控制伺服动力的大小,并与之共同推动主缸活塞,使主缸产生更高的液压通向盘式制动器的油缸和鼓式制动器的轮缸。由真空伺服气室、制动主缸和控制阀组成的总成称为真空助力器。5.2 分路系统为了提高制动工作的可靠性,应采用分路系统

40、,即全车的所有行车制动器的液压或气压管路分为两个或多个互相独立的回路,其中一个回路失效后,仍可利用其他完好的回路进行制动。双轴汽车的双回路制动系统有 II 型、X 型、HI 型、LL 型和 HH 型。其中,II 型回路的布置较为简单,可与传统的单轮缸(或单制动气室)鼓式制动器配合使用,成本较低。目前在各类汽车上应用广泛。X 型的结构也很简单。直行制动时任一回路失效,剩余的总制动力都能保持正常值第 20 页 共 31 页20的 50%。并且制动力的分配系数和同步附着系数没有变化,保证了制动时与整车负荷的适应性。但是,一旦某一管路损坏造成制动力不对称,此时车轮将朝制动力大的一边绕主销转动,使汽车丧

41、失稳定性。所以,具有这种分路方案的汽车,其主销偏移距应取负值,这样,不平衡的制动力使车轮反向转动,改善了汽车的方向稳定性。HI、HH、LL 型结构都比较复杂。所以本设计经过对比,采用 II 型回路。5.3 液压制动驱动机构的设计计算为了确定制动主缸和轮缸直径、制动踏板上的力、踏板行程、踏板机构传动比以及采用增压或助力装置的必要性,必须进行如下的设计计算。5.3.1 制动轮缸直径 d 的确定制动轮缸对制动蹄块施加的张开力与轮缸直径和制动管路的关系为d=4F0/P(5-1))施加的张开力其中:F0制动轮缸对制动蹄(块p制动管路压力;对盘式制动器取 15MPa,鼓式取 10MPa制动管路液压在制动时

42、一般不超过 1012 MPa,对盘式制动器可再取高些。压力越高,轮缸直径就越小,但对管路特别是制动软管及管接头则提出了更高的要求,对软管的耐压性、强度及接头的密封性的要求就更加严格。轮缸直径应在标准规定的尺寸系列中选取,轮缸直径的尺寸系列为:19,22,24,25,28,30,32,35,38,40,45,50,55mm.得:前轮缸直径d1 37.8,根据 HG2865-1997 标准规定尺寸系列取,取直径为 39mm;后轮缸直径 d2=14.9,取为 19mm5.3.2 制动主缸直径d0的确定第 i 个轮缸的工作容积为Vi4d1i(5-2)21n其中:di第 i 个轮缸活塞的直径n轮缸中的活

43、塞数目i第 i 个轮缸活塞在完全制动时的行程,初步设计时,对鼓式制动器可取第 21 页 共 31 页212.02.5mm.盘式:d=39mm,n=1,得V1=2 392=2267.08mm34鼓式:d=19mm,n=1,得 V2=1924=1133.54 mm34全部轮缸的总工作容积:V=V1+V2=2267.08+1134.54=3400.62mm3所有轮缸的工作容积为V Vi,式中 m 为轮缸数目。对于乘用车,v0=1.1v 在初1m步设计时,制动主缸的工作容积可取为;V0=1.1V=3740.68主缸活塞行程s0和活塞直径d0为V04d0S0(5-3)2一般S0=0.81.2d0,本设计

44、取S0 d0得:d016.3mm,主缸的直径应符合系列尺寸,主缸直径的系列尺寸为:19,22,26,28,32,35,38,40,459根据 QC/T311-1999 中规定的尺寸系列根据 QC/T311-1999 中规定的尺寸系列,取为19mm.5.3.3 制动踏板力Fp制动踏板力Fp为Fp4d0p21 1()(5-4)ip式中,ip踏板机构的传动比踏板机构的机械效率,可取=0.820.86,设计中取为 0.86制动踏板力应满足以下要求:最大踏板力一般为 500N(乘用车)或 700N(商用车)。设计时制动踏板力可在 200350N 的范围内选取。设计时取 250N。在设计中,取ip=3.8

45、,=0.86,p=10MPa;Fp=867.4N真空助力必为 3.5第 22 页 共 31 页225.3.4 制动踏板工作行程SpSp=ip(S00102)(5-5)式中,01-主缸中活塞与推杆的间隙一般取01=1.52.0mm02-主缸活塞的空行程在确定主缸容积时应考虑到制动器零件的弹性变形和热变形以及用于制动驱动系统信号指示的制动液体积,因此,制动踏板的全行程(至于地面相碰的行程)应大于正常工作行程的 40%60%,以便保证在制动管路中获得给定的压力。为了避免空气进入制动管路,在主缸活塞回位弹簧的计算中,应保证在踏板放开后,制动管路中仍能保持 0.050.14 MPa的残余液压。最大踏板行

46、程,对乘用车不应大于 100150mm,所以在设计中取为 120mm.5.3.5 制动主缸在设计制动主缸时应该考虑要否补偿孔和在放开制动踏板时主缸活塞原始位置的定位以及在制动管路中是否必须有或不准有残余压力。在前盘式后鼓式的双回路制动系统中,由于盘式制动器制动块与制动盘之间的间隙较小且其油缸活塞的回位仅靠橡胶密封圈的弹力而无强力的回位弹簧,所以盘式制动器开始起制动作用与制动回路中压力开始升高几乎是同时发生的,因此,通往盘式制动器的管路应与双腔制动主缸装有较弱回位弹簧的那一工作腔相接。由于同样原因,在解除制动时,在通往盘式制动器的管路中不允许有残余液压,而通往鼓式制动器的管路在放开制动踏板时必须

47、保有残余压力,为此在与其相通的制动主缸工作腔的出口应装上止回阀。制动主缸由灰铸铁制造,也可采用低碳钢冷挤成形;活塞可由灰铸铁、铝合金或中碳钢制造5.4 真空助力器的设计计算5.4.1 真空助力器如图 5-1 所示:在发动机工作时,真空单向阀(3)被吸开后,加力器室左、右两腔产生相等的真空度。刚踩下制动踏板时,膜片座尚未运动,踏板力经踏板本身的杠杆作用放大后,传到操纵杆(8),使压缩空气阀座弹簧连同空气阀座一起左移,推动制动主缸推杆(1),使制动主缸内的制动液具有一定压力流入制动轮缸。在此过程中,阀门第 23 页 共 31 页23在弹簧的作用下随同空气阀座也左移,待与膜片座上的真空阀座接触时,真

48、空阀即关闭。这时加力气室左、右腔隔绝。推杆(8)继续前移,使空气阀座离开阀门,即空气阀开启。于是,外界空气即经滤芯、1-推杆;2-回位弹簧;3-单向阀;4-活塞;5-膜片;6-空气过滤器;7-通大气孔;8-操纵杆;9-柱塞;10-推盘;11-放气孔;A,B-气室图 5-1真空助力器结构图控制阀和通道 B 充入加力气室右腔。加力气室左、右两腔形成压力差,该压力差的作用力除小部分用以克服回位弹簧(2)的张力外,大部分经膜片座传到制动主缸推杆(1)上。在踩制动踏板的过程中,空气经开启的空气阀不断进入加力气室的右腔,膜片座不断左移。当制动踏板停留在某一位置时,膜片座左移到使空气阀关闭时为止就不再移动。

49、这时真空阀和空气阀都关闭,膜片左、右气压处于平衡状态。放开制动踏板,弹簧立即将操纵杆(8)和空气阀座拉向右边,使阀门离开真空阀座,于是又回到不工作时的状态。参考同类型车,选取参数,真空助力器的有效直径为 210mm,助力比为 3.5。5.5 制动器的主要结构元件5.5.1 制动鼓制动鼓应有足够的强度,刚度和热容量,与摩擦衬片的材料相配合,又应当有较高的摩擦因数。制动鼓有铸造和组合式两种。铸造制动鼓多选用灰铸铁制造,具有机械加工容易、耐磨、热容量大等优点。为防止制动鼓工作时受载变形,常在制动鼓的外圆周部分铸有第 24 页 共 31 页24加强肋,用来加强刚度和增加散热效果。精确计算制动鼓的壁厚既

50、复杂又困难,所以常根据经验选取,对乘用车,制动鼓壁厚取为 712mm,设计中为 10mm.5.5.2 制动蹄乘用车和总质量较小的商用车的制动蹄,广泛采用 T 形钢碾压或用钢板焊接制成;总质量较小的汽车的钢板制成的制动蹄腹板上往往开一条或两条径向槽,使蹄的弯曲刚度小些,其目的是使衬片磨损较为均匀,并减小制动时的尖叫声。制动蹄腹板和翼缘的厚度,乘用车为 35mm.本设计取 4mm制动蹄和摩擦片可以铆接,也可以粘接。粘接的优点在于衬片更换前允许磨损的刚度较大,缺点是工艺复杂,且不易更换衬片。铆接的优点是噪声小。设计中选用铆接衬片。5.5.3 摩擦衬(片)块摩擦衬(片)块的材料应满足如下要求:(1)具

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 毕业论文/毕业设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服