收藏 分销(赏)

《高中数学总复习四十三讲》(下).doc

上传人:s4****5z 文档编号:8210339 上传时间:2025-02-07 格式:DOC 页数:97 大小:3.92MB
下载 相关 举报
《高中数学总复习四十三讲》(下).doc_第1页
第1页 / 共97页
《高中数学总复习四十三讲》(下).doc_第2页
第2页 / 共97页
《高中数学总复习四十三讲》(下).doc_第3页
第3页 / 共97页
《高中数学总复习四十三讲》(下).doc_第4页
第4页 / 共97页
《高中数学总复习四十三讲》(下).doc_第5页
第5页 / 共97页
点击查看更多>>
资源描述

1、第三十四讲分类计数原理与分步计数原理最新命题特点 对本部分内容的考查呈现以下特点: 1分类计数原理和分步计数原理是排列组合问题的基础和依据,虽然不是每年都单独命题,但是其中的思想贯穿于整个排列组合中 2考查内容:两个原理 3考查形式:选择题居多,通常是贯穿于排列组合的其他题目中出现难度一般不大,属于中低档题型预计:典型例题仍然要有题目涉及,综合出现在解答题中的可能性较大应试高分瓶颈 两个原理看起来简单,但是要真正学会并能理解应用不是很容易的事,特别是两个原理的整合应用是高考中丢分的关键因素命题点1 分类计数原理(加法原理)命题点2 分步计数原理(乘法原理)本类考题解答锦囊命题点1 分类计数原理

2、(加法原理) 解答“分类计算原理”一类试题应注意: 1分类计数原理是强调完成一件事情的几类方法互不干扰,彼此之间的交集是空集,并集是全集不论哪类方法中的哪一种方法都能单独完成这件事,办法中的各种方法也是相互独立的 2正确区分分步计数原理与分类计数原理 I 高考最新热门题1(典型例题)从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数学组成没有重复数字的四位数,其中能被5整除的四位数共有个(用数字作答)命题目的与解题技巧:本题主要考查分步计数原理与排列的基本知识 抓住0不能在首位且个位只能是0或5来讨论是正确解题的关键 解析 当个位是0时,_0_ CCA4343144 当个位不是0

3、且含0,_5_ 则个位必为5,先为0选位置 CCCA2342=48 当不含0时,个位必为5,_5 CCA3632108 共有144+48+108300个 答案 3002(2002广东、河南)文理从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 A8种 B12种 C16种 D20种答案: C 指导:甲ABCD甲 由上表知A,D不为甲 (1)若B为甲,则不同传法=4种 (2)若B不为甲,而C为甲, 则不同传法=4种 (3)若9不为甲,C不为甲,则 综上知,共有传球方法4+4+2=10种 3(典型例题)从长度分别为1,2,3,4,5的五条线段中,任取三条的不同取法共有n种在这些取法中,以取

4、出的三条线段为边可组成的钝角三角形的个数为m,则m等于A. B. C. D答案: A 指导:若选择三个不同的数,(且不含0)共有 =168种若选择三个不同的数(含0) 共有8+7+6+5+1=36种若选择二个数,共有8+7+6+1=36种共有168+36+36=240种 4(典型例题)在由数学1、2、3、4、5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有A56个 B57个 C58个 D60个答案: D 指导:从01至10中连续选3个,共有8种选法, 从11至20个连续选2个,共有9种选法, 从21至30个选1个,共有10种选法, 从31至36中选1个,共有6种选法

5、共有89106种号码 共有891062=8640元 故选D 5(典型例题)从0,l,2,3,4,5中任取3个数字,组成没有重复数字的三位数,其中能被5整除的三位数共有_个(用数字作答) 题点经典类型题1(典型例题)等腰三角形的三边均为正数它们周长不大于10这样不同形状的三角形的种数为A8 B9 C10 D1l命题目的与解题技巧:考查分类计数原理;合理分类,注意条件“周长不大于10” 解析 设三边为x,y,z,则x+y+z10,由三边关系共有 (1,1,1),(1,2,2),(1,3,3),(1,4,4),(2,2,2),(2,2,3), (2,3,3),(2,4,4),(3,3,3),(3,3

6、,4)共10种 答案 C2(典型例题)三人传球,由甲开始发球,并作第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有A6种 B8种 C 10种 D16种3(典型例题)如果三位数的十位数字既大于百位数字也大于个位数字,则这样的三位数一共有 A.240个 B285个 C. 231个 D.243个4(典型例题)某体育彩票规定:从01至36共36个号中抽出7个号为一注,每注2元。某人想从01至10中选3个连续的号,从1l至20中选2个连续的号,从21至扣中选1个号,从31至36中选1个号组成一注,则这个人把这种特殊要求的号买全,至少要 A3 360元 B6 720元 C4 320元 D8

7、 640元 新高考命题探究1如图3411,花坛内有五个花池,有五种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则最多有几种栽种方案 A.180种 B240种 C. 360种 D420种D 指导:(1)当1;2,4;3,5仅三种花卉时,有种 (2)当1;2,4;3,5恰四种时,有种 (3)当1;2,4;3,5恰四种时,有种 (4)当栽种五种时,有种2在编号为1,2,3,4的四块土地上分别试种编号为1,2,3,4的四个品种的小麦,但1号地不能种l号小麦,2号地不能种2号小麦,3号地不能种3号小麦,那么有多少不同的试种方案?分两类04号地种4号小麦,1号地有2种试种方

8、法,2、3号 地只有1种试种方法,共有2种种法土地编号与小麦 编号都不相同,第1号土地有3种试种方法,若1号地种的 是第1号小麦,则第1号土地有3种种法,余下的两块地只有 1种种法,共有33=9种试种方法由分类计数原理试种方 案共有2+9=11种命题点2 分步计数原理(乘法原理)本类考题解答锦囊 解答“分类计数原理”一类试题要弄清以下两问题: 1分步计数原理强调各个步骤缺一不可,需要一次完成所有的步骤才能完成事件,步与步之间互不影响,即前一步使用什么方法不影响后一步采取什么方法,也就是步与步之间相互依存,只有连续性,但每步中的不同方法却相互独立,互不干扰2通常把完成题设事件的所有方法分为若干个

9、“互斥类”,又在同一类中将完成事件的方法分成若干个“独立步”,以保证“不重、不漏” I 高考最新热门题 1(典型例题)将3种作物种植在如图3412,5块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有种。(以数字作答)命题目的与解题技巧:本小题主要考查分类、分步计数原理等基础知识,以及运用所学知识解决实际问题的能力 抓住了3种种子都种在试验田中这一特点,是正确解题的关键 解析 分别用a,b,c表示3种作物,先安排第一块田,有3种方法,不妨设先放入a,再安排第二块田有b或c两种作物,有2种方法,不妨设放入A,下面对第三块田种。或c进行分类: (1)若第三块田种c,则第

10、四、五块田分别有2种方法,共22种方法; (2)若第三块田种a,则第四块田仍有b或c两种作物可放; 若第四块田放c,则第五块田有2种方法; 若第四块田放b,则第五块田只能放c,有2种方法综上,共有3x2x2x2+(2+1)=42种方法 答案 422(典型例题)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目如果将这两个节目插入原节目单中,那么不同插法的种数为 A42 B30 C20 D12答案: A 指导:第一步,先插入第一个节目,有6种插入法 第二步,再插入第二个节目,有7种插人法 故共有76=42种3(典型例题、河南)圆周上有2n个等分点(n1),以其中三个点为顶点的直角

11、三角形的个数为_答案:2n(n1) 指导:2n(n1)圆周上有2n个等分点,因此,有n条直径,每条直径为斜边,有2n2个直角三角形,故共有 n(2n-2)=2n(n-1)个直角三角形4(典型例题)设坐标平面内有一个质点从原点出发,沿x轴跳动,每次向正方向或负方向跳1个单位,经过5次跳动质点落在点(3,0)(允许重复过此点)处,则质点不同的运动方法共有_种(用数字作答)答案:5 指导:设每次跳动的值为x(i=1,2,2,3,5),则根据题意得5=3必有4个1和一个-1,共有方法 =5(种)5(典型例题)如图1013所示,一个地区分为52个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现有

12、4种颜色可供选择,则不同的着色方法共有_种(以数字作答)答案:72 指导:先排1区,有4种方法;再排2区,有3种方法;接着排3区,有2种排法下面对4区涂色情况进行分类;若4区与2区同色,有1种方法,此时5区有2种方法,若4区与2区不同色,则1、2、3区不同色,故4区也只有1种方法,此时5区只有1种方法,故共有432(12+11)=72(种) 题点经典类型题 1(典型例题)甲乙丙三个单位分别需要招聘工作人员2人、1人、1人,现从10名应聘人员中招聘4人到甲乙丙三个单位,那么不同的招聘方法共有 A1260种 B2025种 C.2520种 D5040种命题目的与解题技巧:考查分步计数原理与组合知识;

13、合理分步是解决此类问题的关键解析 第一步先从10人中选2个有 种,再从8人中选1个人有 种,再从7人中选1个人有 种,故共有2 520种方法 答案 C2(典型例题)某文艺团体下基层进行宣传演出,原准备的节目表有6个节目,如果保持这些节目的相对顺序不变,在它们之间再插入2个小品节目,并且这2个小品节目在节目表中既不排头,也不排尾,那么不同的插入方法有 A20种 B30种 C.42种 D56种 答案:B 指导:由题意知,将第一个小品节目插人节目单中,有 种插法 将第二个小品节目插入节目单中,有种插法 则共有=30种安排方法3(典型例题)由0,l,2,9这十个数字组成的、无重复数字的四位数中,个位数

14、字与百位数字之差的绝对值等于8的个数为 A180 B196 C。210 D224答案: C 指导:由题意知可能情况有 (1)_08_,(2)_8_0,(3)_1_9_,(4)_9_1_ 对(1)、(2)都有不同数字=87=56种 对(3)、(4)都有不同数字=49种 则共有(56+49) 2=210种不同四位数4(典型例题)某电子器件的电路中,在A、B之间有C、D、E、F四个焊点(如图341-5)如果焊点脱落,则有可能导致电路不通,今发现工A、B间电路不通,则焊点脱落的不同情况有_种答案:13 指导:焊点C是否脱落有12种选法 D、E、F均有2种选法则有Z2=16种方案 而全不脱落电路畅通,有

15、1种方案,恰D、E中一个脱落, 种方案故断路方案有16-1-=13种新高考命题探究1.某银行储蓄卡的密码是一个4位数码,某人采用千位、百位上的数字之积作为十位、个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字选0.千位、百位上都能取0.这样设计出来的密码共有A.90个 B.99个C.100个D.112个答案: C 指导:千位上数字的取法引,百位上数字的取法共设计方案=100种,也即有100个密码 2.如图34-1-6所示,用不同的五种颜色分别为A、B、C、D、E五部分着色,相邻部分不能用同一种颜色,但同一种颜色可以重复使用,也可不使用,则符合这种要求的不同着色的方法种数是A

16、.120 B.240 C.480 D.540答案: D 指导:为A着色有种,为B着色有种为C着色 种,为E着色有种 为D着色有种故共有=540种第三十五讲排列与组合最新命题特点 对本部分内容的考查呈现以下特点: 1排列组合不仅是高中数学的重点问题,同时在实际中有很大的用处,因比在高考中经常有题目涉及 2考查内容:排列、组合的概念、排列数与组合数、排列组合的应用 3考查形式:单独命题是通常出现在选择或填空题中,有时候和组合及概率相结合出现在解答题中难度相对较小,属于高考中的中低档题目预计:典型例题仍然要有题目涉及,出现在解答题中的可能性较大应试高同分瓶颈 1排列中读不清题目中的关键字(如“在”与

17、“不在”、“邻”与“不邻”等)是导致丢分的因素之一 2组合中读不清题目中的关键字(如“恰好”、“至多”、“至少”、“既有又有”等)是导致丢分的因素之一3针对于不同类型的题目灵活使用不同的方法是本部分的难点命题点1 排列命题点2 组台命题点1 排列本类考题解答锦囊 解答“排列”一类试题应注意以下几方面: 1本题考查二次函数的一般式,函数性质和排列组合的应用 2关键是对二次函数、偶函数弄清楚 3“在”与“不在”的问题应该使用“优先法”优先考虑特殊位置或者特殊元素,对这些特殊位置或者特殊元素进行优先排列 4“邻”与“不邻”的问题中:“邻”的问题应使用“捆绑法”;“不邻”的问题应使用“插空法” I 高

18、考最新热门题1(典型例题)从1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+6x+c的系数,可组成不同的二次函数共有_个,其中不同的偶函数共有_个(用数字作答)命题目的与解题技巧:本题考查二次函数的一般式,函数性质和排列组合的应用关键是对二次函数,偶函数弄清楚 解析 a0,a应从除0外的三个数中任取一个有个b、c应从剩下的三个中任取2个,有种取法则组成不同的二次函数共有=18个,组成偶数函数必满足a0,b=0,则有 =6个 答案 62(典型例题)某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为 A B C D答案:

19、B 指导:分两步:把4名学生平均分成两组,有方法:;把两组学生分到六个班级的两个班中,; 种方法,故共有方案种,选B3(典型例题)有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 A.234 B346 C. 350 D363答案: B 指导:前排中间的3个座位不能坐,有排法,其中左;相邻的分三类,在前排的其中的4个座位有3;,则符合条, 的排法的种数中=346,故选B 另解:分三类:两人坐在前排,按要求有46+45=44 种坐法 两人坐在后排,按要求有:=110种坐法 两人分别坐在前后排,有8122=192种

20、共有346种排法4(2002京皖)从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有 A.280种 B.240种 C180种 D96种答案:指导:翻译因为甲、乙两名志愿者都不能从事翻译工作,因此,翻译工作从余下的四名志愿者选一人有种,再从余下的5人中选3人从事导游、导购、保洁有种,因此=240题点经典类型题 题点经典类型题1(典型例题)5人排一个5天的值日表,每天排一人值日,每人可以排多天或不排,但相邻两天不能排同一人,值日表排法的总数为 A.120 B324 C.720 D1280命题目的与解题技巧:考查排列知识,用“涂色

21、原理” 解析 分五步:544441280,故选D 答案 D2(典型例题)用1个1,2个2,3个3这样6个数字可以组成多少个不同的6位数A20 B60 C120 D90答案: B 指导:由题有=60 故选B3(典型例题)有五名学生站成一排照毕业纪念照,其中甲不排在乙的左边,又不与乙相邻,而不同的站法有 A.24种 B36种 C.60种 D66种答案: B 指导:先排甲、乙外的3人,有种排法,再插入甲、乙两人,有种方法,又甲排乙的左边和甲排乙右边各占故不同方法数有=36种 4(典型例题)用0,3,4,5,6排成无重复字的五位数,要求偶数字相邻,奇数字也相邻,则这样的五位数的个数是A36 B32 C

22、24 D20答案: D 指导:按首位数字的奇偶分两类:若首位是奇数,则共有种方法,若首位是偶数,则共有种方法这样的五位数共有=20种 新高考命题探究1百米决赛有6名运动员A、B、C、D、E、F参赛,每个运动员速度不同,则运动员A比运动员9先到终点的比赛结果共有 A360 B240 C120 D48答案: A 指导:由A比F先到终点又A与F先到终点的机会均等,故只需对六人全排后除以2即=360 选A 2 6名运动员站在6条跑道上准备参加比赛,其中甲不能站在第一道也不能站在第二道,乙必须站在第五或第六道,则不同排法种数共有 A144 B96 C72 D48答案: A 指导:先为乙选一道,再为甲选一

23、道余下4人排法有,则共有=1443从6名短跑运动员中选出4人参加4x100米接力赛,如果甲、乙两人都不跑第一棒,那么不同的参赛方案有 A.180种 B240种 C. 300种 D360种答案:指导: 分三种情况:(1)甲、乙都不参加,有=24种;(2)甲、乙仅有1人参加有=144种;(3)甲、乙两人都参加,有72种由分类计数原理共有24+144+72=240种命题点2 组合本类考题解答锦囊 解答“组合”一类试题应注意以下几点: 1读清题意,确定是排列还是组合此时应该注意的地方是:选出的元素是否有各自不同的顺序或者位置 2与排列数不同,组合数有较多的性质(剩余性质和连加性质),与以前或以后的很多

24、知识点都有密切的联系,就引起特别注意。 3注意组合中的关键字:“恰好”、“至多”、“至少”、“既有又有” 4“多面手”问题:分类讨论,分类的依据应该是看多面手分到两边中其中一边的人数 5几何问题:考虑(1)所给点的特点;(2)所构成图形的要求 I 高考最新热门题 1(典型例题)直角坐标xOy平面上,平行直线x=n(n=0,1,2,5)与平行直线y=n(n=0,1,2,5)组成的图形中,矩形共有A.25个 B36个 C.100个 D225个命题目的与解题技巧:考查排列组合的计算问题,以及分析问题、解决问题的能力 解决计数问题的关键是选择计数的出发点,即“完成一个事件”的策略是什么?本题“完成矩形

25、”的构造,考虑的着眼点是矩形是由四条边构成,这四条边从何而来 解析 矩形是从平行直线x=n(n=0,1,2,5)中选择两条,作为一组对边再从平行直线y=n(n=l,0,1,2,5)中选择两条,作为另一组对边形成的每一种选择方案确定一个不同的矩形,故矩形共有 =225个 答案 D2(典型例题)在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是 A B C. D答案: C 指导:任取3件产品有种方法,其中无次品有种方法,故至少有1件次品的方法数为 3(典型例题)从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 A.140种

26、 B120种 C 35种 D34种答案: D 指导:既有女生又有男生,可以分类表示,三男一女有种选法,二男二女有种,一男三女有种 选法,则总的不同的选法有=34(种)4(2002北京)理12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有 A.种 B3种 C种 D种答案: A 指导:先分配4个人到第一个路口,再分配4个人到第二个路口,最后分配4个人到第三个路口 题点经典类型题1 (典型例题)从4名男生和5名女生中任意选出3人参加一个会议,其中至少有1名男生和一名女生,则不同的选派方案有 A140种 B84种 C70种 D35种命题目的与解题技巧:考查组合问题合理

27、使用加法原理 解析 若选两女一男,则有种方法,若选两男一女,则有C种方法,故共有C+=70种 答案 C2(典型例题三校)高三年级有文科、理科共9个备课组,每个备课组的人数不少于4个,现从这9个备课组中抽出12人,每个备课组至少1人,组成“年级核心组”商议年级的有关事宜,则不同的抽调方案共有 A.129种 B148种 C.165种 D585种答案: C 指导:本小题可看成将12个人排成一排,插入8块板,分成9部分有=165种 3(典型例题)一次考试中,要求考生从试卷上的9个题目中选6个进行答题,要求至少包含前5个题目中的3个,则考生答题的不同选法的种数是 A40 B74 C84 D200答案:

28、B 指导:若前5题中包含3个,则共有种,若前5题中包含4个,则共有种,若前5题中包含5个,则共有 种,不同的选法种数为=74种4(典型例题)将1,2,3,9这9个数填在如图3521中的9个空格中,要求每一行从左到右,每一列从上到下依次增大,当3、4固定在图中位置时,所填写空格的方法有 A6 B12 C18 D24答案: A 指导:由题意知数字1,2,9的位置也是固定的,如图:5,6,7,8四个数字在A、B、C、D四个位置上,A、B位置上的填法,C、D位置上的填法,共有=6种,故选A 新高考命题探究 1将7名学生分配到甲、乙两个宿舍中,每个宿舍至少安排2名学生,那么互不相同的分配方案共有 A25

29、2种 B112种 C70种 D56种答案: B 指导:由题知,总分配方法有:=112种 故选B 2圆周上有12个不同的点,过其中任意两点作弦,这些弦在圆内的交点个数最多是 A. B. C. D. 答案: D 指导:圆周上任意四个点的交叉连线交点均在圆内且惟一,故只需确定这样四点的种数由这四点选法有,故在圆内交点个数为,所以选n3设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,由 的值为_答案:考场热身 探究性命题综合测试1一架间谍飞机侵入我领空,空军某部奉命派出三架战机跟踪拦截,作战部要求我战机分别位于敌机的左右两翼和后方成三角之势夹击敌机,这样,我三架战机的不同排列方

30、式有( )种 A3 B6 C9 D12答案: B 指导:即三架飞机三种不同占位,故=6(种)2要排出一张6个歌唱节目和4个舞蹈节目的演出节目单,任何两舞蹈节目不得相邻,不同的排法共有( )种 A B C D答案: D 指导:先排6个歌唱节目有种排法,这6个节目有7个空隙(首尾各一个,中间5个),在这七个空隙中将4个舞蹈节目插入有种插法,由分步计数原理,共有种方法 3现从某校5名学生中选出4人参加数学、物理、化学三个课外活动小组,要求每个小组至少有一人参加,且每人只参加一个活动小组,则不同的参加方案种数是 A180 B120 C60 D30答案: A 指导乙丛5名学生中选4人有种选法,然后4人分

31、成3组参加数理化三个课外活动小组,有种,则共有=180(种) 选A4某人手中有5张扑克牌,其中2张为不同花色的2,3张不同花色的A,有5次出牌的机会,每次只能出一种点数的牌,但张数不限,此人有多少种不同的出牌方法?答案:=860种指导:出牌的方法可分为以下几类:5张牌全部分开出,有种方法;欧张2一起出,3张A分开出,有种方法;2张2一起出,3张A分开出,有种方法;2张2一起出,3张A分两次出,有种方法;2张2分开出,3张A 一起出,有种方法;2张2分开出,3张A分两次出,有种方法,因此共有不同的出牌方法 5已知y=f(x)是定义域为A=x|1x7,xN,值域为B=0,1的函数 (1)试问这样的

32、函数f(x)共有多少个? (2)若对于定义域中的4个不同元素,对应的函数值都是1,那么这样的函数共有多少个?答案:(1)函数是非空数集到非空数集上的一个映射,根据映射的 定义,只要对集合A中的7个元素在9中都有唯一的元素与之对应即可,根据分步计数原理,共有2222=128个,又0或1没有原象的映射各有一个,故这样的函数f(x)共有1282=126个 (2)因为定义域中的4个元素对应于值域中的1,那么其余3 个元素都对应值域中的0,故这样的函数f(x)有=35(个)第三十六讲二项式定理最新命题特点 对本部分内容的考查呈现以下特点: 1二项式定理是高中数学中的重点内容,也是高考中每年必考的内容 2

33、考查内容:(1)二项展开式;(2)二项展开式的通项公式;(3)二项式系数、二项式系数和;(4)展开式系数、系数和预计:20年高考可能有题目涉及,出现在选择填空中的可能性较大应试高分瓶颈 1二项展开式的通项公式容易出错第r十1项的二次式系数为 2二项式系数、系数的区别与使用是本部分的难点内容,也是高考中丢分的关键因素之一命题点1 通项公式命题点2 二项展开式的系数与系数和命题点1 通项公式本类考题解答锦囊解答“通项公式”一类试题要注意以下几方面: 1熟悉通项公式 2在二项式的题目中出现“项”的问题(如常数项、含x的项、含 的项、有理项等),通常都要用通项公式 3用通项公式解题,通常是解方程的问题

34、,要注意方程的选取I 高考最新热门题1(典型例题)展开式中x5的系数为_.命题目的与解题技巧:本小题主要考查二项式定理、指定项系数等基本知识 利用好二项展开式的通项公式Tr+1使问题简化 解析 Tr+1令8-5得r2 展开式中x5的系数为28 答案 282(典型例题)若(12x)9展开式的第3项为288,则 的值是A.2 B1 C. D.答案: A 指导:(a+b)n展开式中第r+1项为3(典型例题)已知(x-展开式中常数项为1120,其中实数。是常数,则展开式中各项系数的和是A.28 B38 C.1或38 D1或28答案: C 指导: 设第r+1 项为常数项,则有即:当a=2时,4(典型例题

35、)已知的展开式中各项系数的和是128,则展开式中x5的系数是_.(以数字作答)答案:35 指导:各项系数和为 题点经典类型题1(典型例题)已知(的二项展开式的第六项是常数项,那么n的值是A32 B33 C34 D35 命题目的与解题技巧:考查二项式定理 灵活使用通项 解析 故选D 答案 D2(典型例题)(x3+的展开式中,第6项系数最大,则不含x的项为 A210 B10 C462 D252答案: A 指导:第六项系数即为第六项的二项式系统。3(典型例题)设f(x)=1+x+(1+x)2+(1+x)n 的展开式中x项的系数和为Tn,则 A. B. C. D.l答案: C 指导:4(典型例题)已知

36、的展开式的第五项等于,则(x-1+x-2+x-n)等于 A0 B1 C2 D3答案: B 指导:5(典型例题)若(x2+)n的展开式中,只有第四项的系数最大,那么这个展开式中的常数项是_ 答案:20 指导:由题知n=6,常数项为6(典型例题)若的展开式中的第5项为常数项,则n=_ .8 指导:第5项为常数项 新高考命题探究1在(1+x)3+(1+x)4+(1+x)典型例题式中x3的系数等于 A B C DB 指导: x3 的系数等于2在(x2+3x+2)5展开式中x的系数为 A160 B240 C360 D800答案:B零 指导:由题知x 的系数为命题点2 二项展开式的系数与系数和本类考题解答

37、锦囊 解答“二项展开式的系数与系数和”一类试题要注意: 1区分二项式系数与系数的区别与联系,不要将两者混为一谈 2二项式系数和与系数和:二项式系数和式是结论性的,记住结论即可系数和的求法是“赋值法”,针对不同的问题赋不同的值,通常是“1,-1,0” 3注意系数和与二项式系数和中的“全和”与“半和” I 高考最新热门题1(典型例题)若(12x)典型例题+a1x+a2x2+a典型例题04(xR),则(ao十a1) +(ao+a2) +(ao+a3)+(ao十a典型例题_.(用数字作答)命题目的与解题技巧:本小题主要考查二项式定理的基本知识,以及赋值法等基本方法 观察式子特点,寻找x赋值为多少时使已

38、知所得等式更接近所求,从而使问题迎刃而解 解析 令x=0,得a0=1; 令x=1,得1=ao+a1+a2+a典型例题 故(a0+a1) +(a0+a2) +(a0+a3) +(a0+a典型例题003+a0+a1+a2+a典型例题04 答案 典型例题(典型例题) A3 B. C. D6答案: B 指导:原式3(2002上海)在二项式(1+3x)和(2x+5)的展开式中,各项系数之和分别记为an、bn,n是正整数,则_.答案: 4(典型例题)若(x+2)n=xn+ax3+bx2+cx+2n(nN,且n3),且a:b=3:2,则n=_.答案:指导:故a= 题点经典类型题1(典型例题)若(nN+),且

39、(2x)n=a0+alx+a2x2+anXn,则a0-a1+a2-+(-1)nan等于 A81 B27C243 D729命题目的与解题技巧:考查二次式定理 灵活运用“半和”公式 合理使用“赋值法” 解析 由题知2n+6=n+2,n=-4(舍)或2n十6n十2=20n=4 此时令x=1,a0-a1+a2-a3+(-1)nan=34=81 答案 A 2(典型例题)已知=am+am+1+an(其中m、nZ,且0mn)若f(x)= A0 B-2 C.(-1)n Dn为偶数时为0,n为奇数时为-2答案: D 指导:由题知,只需令x=1则 3(典型例题)若n是奇数,则7n+7被9除的余数是 A0 B2 C

40、7 D8答案: C 指导:原式n为奇数,故侨余数为7。 4(典型例题)若(2x)l0=a0+a1x+a2x2+al0x10,则log2a0+log2a8+log45=_.答案:12 指导,; 新高考命题探究1在(1+x)n(n为正整数)的二项展开式中,奇数项的和为A,偶数项的和为B,则(1-x2)n的值为 A0 BAB CA2-B2 DA1+B2答案: C 指导:由题知2多项式(12x)5(2+x)中含x3的系数是 A120 B100 C. 100 D120答案:D 指导:因为考场热身 探究性命题综合测试1当nN*且n2时,1+2+22+24n-1=5p+q(其中p、q为非负整数,且0q5),则q的值为 A0 B1C. 3 D与n有关答案: A 指导:由于1+2+问题转化为求24n-1被5除的余数。2已知(2x2+(nN*)的展开式中含有常数项,则n的最小值是 A4 B5 C9 D10答案: B 指导: 3(13a+2b)5展开式中不含b的项系数之和是_.答案:指导:令a=1,b=0即得不含b的项系数之和为第三十七讲 概 率最新命题特点 对本部分内容的考查呈现以下特点: 1概率是高中数学中与现实生活联系非常密切的一部分,在历年的高考中占很大的比重 2考查内容:(1)等可能性事件;(2)互斥事件有一个发生的概

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服