资源描述
,单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,Levy,过程及其在金融领域中的应用,1,二个例子,2,Monika Piazzesi,Bond Yields and the Federal Reserve,Journal of Political Economy,2005,vol.113,no.2,3,Rafal Weron,Heavy tails and electricity prices,The Deutsche Bundesbanks 2005 Annual Fall Conference(Eltville,10-12 November 2005):,4,概要,Levy,过程简介,Levy,过程在数理金融中的应用,Levy,过程的统计分析,Levy,过程的进一步推广,5,Levy,过程的定义:,设,X(t),t,0,是一随机过程:如果,(,1,),X(t),具有平稳独立增量,(,2,),P(X(0)=0)=1,(,3,),X(t),具有右连左极的轨道,(,4,),X(t),是随机连续的,即,对任意,a0,s,0,当,t,s,有,P,(|X(t)-X(s)|a),0,6,Levy Processes:1930s-1940s,Paul,Levy,(France),Alexander,Khintchine,(Russia),Kiyosi,Ito,(Japan),7,Levy,过程的三种刻画,Levy-Khintchine,公式:,称为,Levy,三元组,,称为,Levy,测度,8,Levy,过程的三种刻画,Levy-Ito,分解:,X(t)=,布朗运动,+,常数漂移,+,复合,Poisson,过程,+,纯跳鞅,是一,Poisson,随机测度,且与布朗运动,B,t,相互独立,9,Levy,过程的三种刻画,Levy,过程是,Markov,过程:,转移半群:,T(t)f=Ef(x(t),无穷小算子:,10,Levy,过程的例子,Levy-Ito,分解变为:,Subordinator,:,关于时间,t,单调递增的,Levy,过程,此时,Levy,三元组应满足:,11,12,Levy,过程的例子,稳定过程:,Levy,三元组,:,13,14,Levy,过程的例子,Gamma,过程,Levy,三元组:,过程的一维分布:,15,16,Levy,过程的例子,正态逆,Gauss,过程:,Levy,三元组:,过程的一维分布:,17,Levy,过程的例子,Levy,三元组,t=1,时,过程的一维分布:,J,1,第一类,Bessel,函数,Y,1,第二类,Bessel,函数,双曲线的,Levy,运动,18,在金融领域的应用,定价中的几何,Levy,过程模型:,资产价格:,S,t,满足:,Z,t,是,Levy,过程。,在几何,Levy,过程模型下,市场一般是一不完备的市场,等价鞅测度不唯一,如何选择一合适的,Levy,过程和相应的等价鞅测度是要研究的主要问题。,19,具体的,Levy,过程,(1)Stable process(Mandelbrot,Fama(1963),(2)Jump diffusion process(Merton(1973),(3)Variance Gamma process(Madan(1990),(4)Generalized Hyperbolic process(Eberlein(1995),(5)CGMY process(Carr-Geman-Madam-Yor(2000),(6)Normal inverse Gaussian process(Barndorff-Nielsen),(7)Finite moment log stable process(Carr-Wu(2003),20,Morton,模型,其中:,W,t,标准布朗运动,,N,t,为,Poisson,过程,Y,i,独立同分布,服从正态分布,且,W,t,N,t,Y,i,相互独立,21,可供选择的等价鞅测度,(1)Minimal Martingale Measure(MMM)(Follmer-Schweizer(1991),(2)Variance Optimal Martingale Measure(VOMM)(Schweizer(1995),(3)Mean Correcting Martingale Measure(MCMM),(4)Esscher Martingale Measure(ESMM)(Gerber-Shiu(1994),B-D-E-S(1996),(5)Minimal Entropy Martingale Measure(MEMM)(Miyahara(1996),Frittelli(2000),22,参考文献,R.Cont,P.Tankov(2003).Financial modelling with jump processes.Chapman and Hall/CRC Press.,J.M.Corcuera,D.Nualart,W.Schoutens(2005).Completion of a Levy market by power-jump assets.Finance Stoch.9,109-127.,E.Eberlein,J.Jacod(1997).On the range of options prices.Finance Stoch.1,131-140.,Frittelli,M.(2000),The Minimal Entropy Martingale Measures and the Valuation Problem in Incomplete Markets,Mathematical Finance,10,39-52.,Bellini,F.and Frittelli,M.(2002),On the existence of minimax martingale measures,Mathematical Finance,12,1-21.,23,Ornstein-Uhlenbeck,型过程,其中,Z(t),为一,Levy,过程,,X(t),称为,Ornstein-Uhlenbeck,型过程,K.Sato,和,M.Yamazato(1984,ASP),24,Barndorff-Nielsen-Shephard,模型,推广的随机波动率模型:,dX(t)=bX(t)dt+,(t)X(t)dW(t),Z(t),是一,Levy,过程,E.Barndorff-Nielsen,和,N.Shephard(2001,JRSS(B),E.Barndorff-Nielsen,和,N.Shephard(2002,JRSS(B),25,利率模型,CKLS,模型(,1992,):,(,1976,),在,r=0,时,这一模型为,Vasicek,模型,在,r=1/2,时,这一模型为,CIR,模型。,在,b=0,,,r=0,,这一模型即为,Merton,模型,Monika Piazzesi,Bond Yields and the Federal Reserve,Journal of Political Economy,2005,vol.113,no.2,26,过程的统计推断问题,参数估计问题,最大似然估计,广义矩估计,估计函数(鞅估计函数),假设检验问题,有无跳、变点问题,27,中国科学,A,辑,,2006 36,(,8,),901-927,模型:,问题:,求参数,,,,,c,的估计,结果:,得到了,,,,,c,的最大似然估计,并证明了相合性与渐进正态性。,张世斌、张新生、孙曙光,28,29,30,31,模型的进一步推广,自相似过程,分数维布朗运动:,32,分数维布朗运动及其随机积分,分数维布朗运动的基本性质:,在,H1/2,时,分形布朗运动是长程相依的;,在,H,1/2,时,分形布朗运动既不是,Markov,过程,也不是半鞅。,33,关于分形布朗运动的随机积分,Rough paths,1.Lyons,T.J.Differential equations driven by rough signals.Rev.Math.Iberoamer.14(1998),215-310.,2.Coutin,L.,Qian,Z.Stochastic analysis,rough path analysis and,fractional Brownian motions.Probab.Theory Related Fields 122(2002),no.1,108-140.,Malliavin calculus,34,关于分形布朗运动的随机积分,Nualart,D.Stochastic calculus with respect to the fractional,Brownian motion and applications.Contemporary Mathematics 336(2003),3-39.,Wick products,Duncan,T.E.,Hu,Y.,Pasik-Duncan,B.Stochastic calculus for,fractional Brownian motion I.Theory.SIAM J.Control Optim.38,(2000),582-612.,轨道意义下,(,path-wise,),35,分数维,Orntein-Uhlenbeck,型过程,(,Fractional Orntein-Uhlenbeck Type Processes,),dX(t)=-,X(t)dt+,dWH(t)+dY(t),其中,WH(t),是参数为,H,的分数维布朗运动,,Y(t),为纯跳,Levy,过程。,36,(张新生(,2006,),37,由,Levy,过程驱动的随机微分方程,dX(t)=B(X(t)dt+M(X(t)dZ(t),Z(t),为,Levy,过程,R.F.Bass,Stochastic Dierential Equations,with Jumps,Probability Surveys Vol.1(2004)1-19,38,参考文献(书),D.Applebaum,Levy Processes and Stochastic Calculus,Cambridge University Press,2004,O.E.Barndorff-Nielsen,T.Mikosch and S.Resnick,(Eds.),Levy Processes:Theory and Applications,Birkhauser,2001,J.Bertoin,Levy Processes,Cambridge University Press,1996,W.Schoutens,Levy Processes in Finance:Pricing Financial Derivatives,Wiley,2003,R.Cont and P Tankov,Financial Modelling with Jump Processes,Chapman&Hall/CRC,2004,K.,Sato,.Levy Processes and Infinitely Divisible Distributions.Cambridge:Cambridge University Press,1999,39,谢谢!,40,
展开阅读全文