收藏 分销(赏)

基于R语言的多重比较方法.doc

上传人:pc****0 文档编号:8049381 上传时间:2025-02-01 格式:DOC 页数:10 大小:124.10KB 下载积分:10 金币
下载 相关 举报
基于R语言的多重比较方法.doc_第1页
第1页 / 共10页
基于R语言的多重比较方法.doc_第2页
第2页 / 共10页


点击查看更多>>
资源描述
基于R语言的七种多重比较方法 一花视界 百家号10-1403:18 多重比较的方法很多,根据试验设计的目的不同有不同的应用。 若试验设计之初,便明确要比较某几个组均数间是否有差异,称为事前比较。常用的事前比较方法有LSD、Bonferroni和Dunnett法。 若研究目的是方差分析有统计学差异后,想知道哪些组间的均数有差异,便是事后比较。事后比较的常用方法有SNK、Turkey、Scheffe 和 Bonferroni法。 本文仅介绍7种方法及R语言函数,可解决绝大部分多重比较问题。 1.LSD法 LSD法即最小显著差法;该法一般用于计划好的多重比较。它其实只是t检验的一个简单变形,并未对检验水准做出任何校正,只是为所有组的均数统一估计了一个更为稳健的标准误。 LSD法比较效果较为灵敏,在R语言中可利用agricolae包中的LSD.test函数实现,其调用格式为: LSD.test(y, trt, DFerror, MSerror, alpha = 0.05, p.adj=c("none","holm","hommel", "hochberg", "bonferroni", "BH", "BY", "fdr"), …) 其中y为方差分析对象,trt为要进行多重比较的分组变量,p.adj可以选定P值矫正方法。当p.adj=”none”时,为LSD法,p.adj="bonferroni"时为Bonferroni法。 R代码: library(agricolae) # sweetpotato为agricolae自带数据集 data(sweetpotato) #进行方差分析,分组变量为virus model #进行多重比较,不矫正P值 out <- lsd.test(model,"virus",="" p.adj="none" ) #结果显示:标记字母法 out$group #可视化 plot(out) 程序运行结果: 从运行结果看,四个处理,oo和ff处理无差异,与cc和fc彼此差异显著。下图是可视化结果。 2. Bonferroni法 它是Bonferroni校正在LSD法上的应用。 将LSD.test中p.adj设置为"bonferroni"即为Bonferroni法。 R代码: library(agricolae) # sweetpotato为agricolae自带数据集 data(sweetpotato) #进行方差分析,分组变量为virus model #进行多重比较,不矫正P值 out <- lsd.test(model,"virus",="" p.adj=" bonferroni" ) #结果显示:标记字母法 out$group #可视化 plot(out) 运行结果与LSD法类似,不再展示。 3. Dunnett检验 用于多个试验组与一个对照组间的比较。R语言中可利用multcomp包中的glht()函数进行包括Dunnett检验在内的多种检验,其调用格式为: glht(model, linfct, alternative = c("two.sided", "less", "greater"), ...) 其中model为方差分析对象,linfct设置要进行多重比较的分组变量和方法。 R代码: library(multcomp) rht <- glht(model,="" linfct="mcp(virus" =="" "dunnett"),alternative="two.side" ) #model是方差分析对象 #virus是分组变量 #方法为Dunnett summary(rht) #可视化 plot(rht) 程序运行结果: 结果表明:三个处理均与对照cc差异显著。下图为可视化结果: 4. SNK法(Student-Newman-Keuls) 实质上是根据预先制定的准则将各组均数分为多个子集, 利用Studentized Range分布来进行假设检验。推荐优先用Tukey检验 SNK法可用agricolae包中的SNK.test()函数实现,其调用格式为: SNK.test(y, trt, alpha = 0.05, …) 其中y为方差分析对象,trt为要进行多重比较的分组变量 R代码: library(agricolae) # sweetpotato为agricolae自带数据集 data(sweetpotato) #进行方差分析,分组变量为virus model #进行多重比较,不矫正P值 out <- snk.test(model,"virus") #结果显示:标记字母法 out$group #可视化 plot(out) 程序运行结果与LSD.test类似。 5. Turkey检验 使用学生化的范围统计量进行组间所有成对比较。Tukey的检验特点: 所有各组的样本数相等; 各组样本均数之间的全面比较; 可能产生较多的假阴性结论。 R中Turkey检验检验的函数为TukeyHSD(model),其调用格式为: TukeyHSD(model) 其中model为方差分析对象 R代码: tuk=TukeyHSD(model) tuk plot(tuk) 程序运行结果: 可视化结果: 6.Duncan法(新复极差法)(SSR) 指定一系列的“range”值,逐步进行计算比较得出结论。 Duncan法可用agricolae包中的duncan.test()函数实现,其调用格式为: duncan.test(y, trt, …) 其中y为方差分析对象,trt为要进行多重比较的分组变量 R代码: # model为方差分析对象 out <-duncan.test (model,"virus") #结果显示:标记字母法 out$group #可视化 plot(out) 程序运行结果与LSD.test类似。 7. Scheffe检验 为均值的所有可能的成对组合执行并发的联合成对比较。使用F取样分布。可用来检查组均值的所有可能的线性组合,而非仅限于成对组合。Scheffe检验特点: 各组样本数相等或不等均可以,但是以各组样本数不相等使用较多; 如果比较的次数明显地大于均数的个数时,Scheffe法的检验功效可能优于Bonferroni法 Scheffe法可用agricolae包中的scheffe.test()函数实现,其调用格式为: duncan.test(y, trt, …) 其中y为方差分析对象,trt为要进行多重比较的分组变量 R代码: # model为方差分析对象 out <-scheffe.test (model,"virus") #结果显示:标记字母法 out$group #可视化 plot(out) 程序运行结果与LSD.test类似。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 学术论文 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服