收藏 分销(赏)

minitab回归分析.ppt

上传人:可**** 文档编号:799670 上传时间:2024-03-21 格式:PPT 页数:49 大小:758KB
下载 相关 举报
minitab回归分析.ppt_第1页
第1页 / 共49页
minitab回归分析.ppt_第2页
第2页 / 共49页
点击查看更多>>
资源描述
迴歸分析李德治概論英國科學家Francis Galton“Regression toward mediocrity in heredity stature”孩子的身高會趨向平均發展當雙親的身高都很高(矮)時,他們的孩子身高雖然會高(矮)於一般人,卻往往比父母親矮(高)相關分析協助我們判斷二個屬量變數之間的相關性與相關程度變異數分析推斷數量應變和屬質自變數間是否相關迴歸分析了解二變數間或一個應變數與多個自變數之間是否相關、相關方向與強度、利用觀察其他變數來預測研究者感興趣的變數(應變數)迴歸分析原理目的再於找出一條最能夠代表所有觀測資料的函數(迴歸估計式)用此函數代表應變數和自變數之間的關係XYXYa簡單線性迴歸分析應用時機以單一變數進行預測判斷兩變數之間相關的方向和程度如判斷溫度與用電量之關係,並由溫度預測用電量統計模型:表直線和Y軸的截距:表直線的斜率,也是X對Y的邊際影響,即 當X變動一單位,Y的變動量為i:隨機誤差項簡單線性迴歸的基本假設在各個Xi之下所對應的Y,其平均值可表為E(Y)=+Xi對每一個Xi而言,其所對應的Y為變異數相等的分配Yi之間無關,且共變數為0 Cov(Yi,Yj)=0自變數X為非隨機變數,且至少要有二個以上觀測值誤差項的假設E()=0 E(Y)=+X對所有的X值而言,的變異數均相同相互獨立為來自常態分配的隨機變數X=10X=20X=30XYE(Y)=+X當X=10之E(Y)當X=10,Y之分配對每個X而言Y之分配形狀皆相同參數估計最小平方估計法(ordinary least square estimation,OLSE)最大概似法(maximum likelihood estimation,MLE)最小評方法應變數之第i個觀察值的實際觀察值應變數之第i個觀察值的估計值斜率的抽樣分配、信賴區間及檢定的檢定可以判斷X、Y之間是否有線性關係的存在=0,表不論X為何值,對於Y的分配不會有任何影響假設檢定 H0:=0 H1:0的抽樣分配E(b)=b為常態分配 的信賴區間 的1-信賴區間的統計檢定若或則拒絕H0截距的抽樣分配、信賴區間及檢定的抽樣分配E()=的信賴區間為的分配a的 信賴區間的統計檢定若或拒絕H0:=0XYSST=SSE+SSR 總平方和=誤差造成的平方和+回歸造成的平方和判定係數XY的統計檢定簡單迴歸F=t2若拒絕H0注意事項拒絕H0:=0,到達顯著水準,並不能得到x,y存在線性相關的結論,只能說x,y存在相互關係已進行t,與F檢定後,不需再利用相關係數進行顯著檢定有關簡單迴歸分析的結果,可得下列資訊簡單判定係數表示整體迴歸模型的適合度小於顯著水準,表示整體迴歸模型是合宜的ANOVA表估計係數t檢定結果判斷迴歸模型是否符合樣本資料,同時可藉由所得的樣本估計式去進行預測利用估計迴歸方程式進行估計與預測已知x值所對應之y平均數的點估計當時的估計值為:y平均數的信賴區間估計XY個別y值的點估計個別y值的預測的區間估計已知下的預測區間估計XY信賴區間預測區間殘差分析:驗證模型假設殘差分析可協助決定迴歸分析所做之假設是否適切殘差分析提供有關的最佳訊息殘差分析大多以圖形檢查為基礎殘差分析圖殘差對應變數x的繪圖殘差對應變數y的會題標準化殘差圖常態機率圖第i個觀察值的殘差:對應x值的殘差圖x0良好模式x0變異數不固定x0迴歸模型不適當對應y值之殘差圖y0良好模式標準化殘差圖第i個觀察值的標準化殘差x0希望95%的標準化殘差介於-2與2間常態機率圖常態計分0點越靠近45度線,支持殘差為常態分配的假設證據就越強偵測離群值簡單線性迴歸散佈圖標準化殘差圖小於-2或大於2稱為離群值偵測具影響力的值槓桿作用庫克統計量(Cooks D)高槓桿作用點庫克統計量(Cooks D)p:自變數數目迴歸的輸入模式同時分析法 simultaneous multiple regression所有的預測變項同時納入迴歸方程式當中。強制進入法在某一顯著水準下,將所有對於依變項具有解釋力的預測變項納入迴歸方程式,不考慮預測變數間的關係,計算所有變數的迴歸係數。強制淘汰法與強迫進入法相反,強制淘汰法之原理為在某一顯著水準下,將所有對於依變項沒有解釋力的預測變項,不考慮預測變數間的關係,一次全部排除在迴歸方程式之外,再計算所有保留在迴歸方程式中的預測變數的迴歸係數。迴歸的輸入模式逐步分析法(stepwise multiple regression)所有的預測變項並非同時被取用來進行預測,而是依據解釋力的大小,逐步的檢視每一個預測變項的影響,稱為逐步分析法。順向進入法(forward)預測變項的取用順序,以具有最大預測力且達統計顯著水準的獨變項首先被選用,然後依序納入方程式中,直到所有達顯著的預測變項均被納入迴歸方程式。反向淘汰法(backword)與順向進入法相反的程序,所有的預測變項先以同時分析法的方式納入迴歸方程式的運算當中,然後逐步的將未達統計顯著水準的預測變項,以最弱、次弱的順序自方程式中予以排除。直到所有未達顯著的預測變項均被淘汰完畢為止。逐步分析法(stepwise)綜合順向進入法與反向淘汰法階層分析法預測變項間可能具有特定的先後關係,而需依照研究者的設計,以特定的順序來進行分析。研究目的邏輯基礎理論基礎實証經驗邏輯推理專家共識開列迴歸方程式資料蒐集迴歸分析殘差分析適當?提報結果練習一某研究所10名學生修李老師的多變量統計課,期中考與期末考成績如下,請問李老師可以用學生期中考的成績來預測期末考成績嗎?編號12345678910期中考 78 80 90 90 70 88 82 74 65 85期末考 84 83 89 90 78 89 87 84 78 80練習二:下表為十二位研究員的體重與血壓統計表,請預測體重80的研究員血壓為何?編號123456789101112體重684856608356625977587564血壓95989796110 155 135 128 113 168 120 115年度七月分均溫尖峰用電(KW)年度七月分均溫尖峰用電(KW)199032.020.00199633.524.3199132.721.00199732.825.00199233.423.00199833.225.60199336.622.80199934.228.00199433.524.70200034.429.00199533.824.60200134.530.20模型設定:尖峰用電=a+b氣溫練習
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服