收藏 分销(赏)

2015年解析几何高考试题集锦.doc

上传人:仙人****88 文档编号:7972193 上传时间:2025-01-29 格式:DOC 页数:15 大小:916.50KB
下载 相关 举报
2015年解析几何高考试题集锦.doc_第1页
第1页 / 共15页
2015年解析几何高考试题集锦.doc_第2页
第2页 / 共15页
2015年解析几何高考试题集锦.doc_第3页
第3页 / 共15页
2015年解析几何高考试题集锦.doc_第4页
第4页 / 共15页
2015年解析几何高考试题集锦.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、2014(4)已知双曲线的离心率为2,则A. 2 B. C. D. 110. 已知抛物线C:的焦点为,是C上一点,zxxk,则( )A. 1 B. 2 C. 4 D. 820. (本小题满分12分)已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1) 求的轨迹方程;(2) 当时,求的方程及的面积(23) 本小题满分10分)选修4-4:坐标系与参数方程已知曲线,直线(为参数)(1) 写出曲线的参数方程,直线的普通方程;过曲线上任意一点作与夹角为30的直线,交于点,求的最大值与最小值2015 5、已知椭圆E的中心为坐标原点,离心率为,E的右焦点与抛物线的焦点重合,是C的准线与E

2、的两个交点,则 ( B )(A) (B) (C) (D)16、已知是双曲线的右焦点,P是C左支上一点, ,当周长最小时,该三角形的面积为 【答案】20.(本小题满分12分)已知过点且斜率为k的直线l与圆C:交于M,N两点.(I)求k的取值范围;(II),其中O为坐标原点,求.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系 中,直线,圆,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.(I)求的极坐标方程.(II)若直线的极坐标方程为,设的交点为,求 的面积.【答案】(),()【解析】试题分析:()用直角坐标方程与极坐标互化公式即可求得,的极坐标方程;()将将代入即可求出|M

3、N|,利用三角形面积公式即可求出的面积.试题解析:()因为,的极坐标方程为,的极坐标方程为.5分 ()将代入,得,解得=,=,|MN|=,因为的半径为1,则的面积=.【考点定位】直角坐标方程与极坐标互化;直线与圆的位置关系【名师点睛】对直角坐标方程与极坐标方程的互化问题,要熟记互化公式,另外要注意互化时要将极坐标方程作适当转化,若是和角,常用两角和与差的三角公式展开,化为可以公式形式,有时为了出现公式形式,两边可以同乘以,对直线与圆或圆与圆的位置关系,常化为直角坐标方程,再解决.3. 已知抛物线的准线经过点,则抛物线焦点坐标为( )A B C D【答案】20如图,椭圆经过点,且离心率为.(I)

4、求椭圆的方程;(II)经过点,且斜率为的直线与椭圆交于不同两点(均异于点),证明:直线与的斜率之和为2.试题分析:(I)由题意知,由,解得,继而得椭圆的方程为;(II) 设,由题设知,直线的方程为,代入,化简得,则,由已知, 从而直线与的斜率之和化简得.试题解析:(I)由题意知,综合,解得,所以,椭圆的方程为.(II)由题设知,直线的方程为,代入,得 ,由已知,设,则,从而直线与的斜率之和 .考点:1.椭圆的标准方程;2.圆锥曲线的定值问题.23. 选修4-4:坐标系与参数方程在直角坐标版权法吕,直线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,的极坐标方程为.(I)写出的

5、直角坐标方程;(II)为直线上一动点,当到圆心的距离最小时,求点的坐标.【答案】(I) ; (II) .试题分析:(I)由,得,从而有,所以(II)设,又,则,故当时,取得最小值,此时点的坐标为.试题解析:(I)由,得,从而有所以(II)设,又,故当时,取得最小值,此时点的坐标为.考点:1. 坐标系与参数方程;2.点与圆的位置关系.11已知椭圆的右焦点为短轴的一个端点为,直线交椭圆于两点若,点到直线的距离不小于,则椭圆的离心率的取值范围是( )A B C D【答案】A19(本小题满分12分)已知点为抛物线的焦点,点在抛物线上,且()求抛物线的方程;()已知点,延长交抛物线于点,证明:以点为圆心

6、且与直线相切的圆,必与直线相切6、若双曲线的一条渐近线经过点(3,-4),则此双曲线的离心率为A、 B、 C、 D、【答案】D9、已知点A,B,C在圆上运动,且ABBC,若点P的坐标为(2,0),则 的最大值为A、6 B、7 C、8 D、9【答案】B12、在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.若曲线C的极坐标方程为,则曲线C的直角坐标方程为_.【答案】13. 若直线3x-4y+5=0与圆相交于A,B两点,且(O为坐标原点),则r=_2_.20. (本小题满分13分)已知抛物线的焦点F也是椭圆的一个焦点,与的公共弦长为,过点F的直线与相交于两点,与相交于两点,且与

7、同向。(I)求的方程;(II)若,求直线的斜率试题分析:(I)由题通过F的坐标为,因为F也是椭圆的一个焦点,可得,根据与的公共弦长为,与都关于轴对称可得,然后得到对应曲线方程即可; (II) 设根据,可得,设直线的斜率为,则的方程为,联立直线与抛物线方程、直线与椭圆方程、利用韦达定理进行计算即可得到结果.试题解析:(I)由知其焦点F的坐标为,因为F也是椭圆的一个焦点,所以 ; 又与的公共弦长为,与都关于轴对称,且的方程为,由此易知与的公共点的坐标为, ,联立得,故的方程为。(II)如图,设 因与同向,且,所以,从而,即,于是 设直线的斜率为,则的方程为,由得,由是这个方程的两根,由得,而是这个

8、方程的两根, 将、代入,得。即所以,解得,即直线的斜率为15、椭圆()的右焦点关于直线的对称点在椭圆上,则椭圆的离心率是 【答案】19. (本题满分15分)如图,已知抛物线,圆,过点作不过原点O的直线PA,PB分别与抛物线和圆相切,A,B为切点.(1)求点A,B的坐标; (2)求的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公共点为切点.因为直线PA与抛物线相切,所以,解得.所以,即点.设圆的圆心为,点的坐标为,由题意知,点B,O关于直线PD对称,故有,解得.即点.(2)由(1)知,直线AP的方程为,所以点B到直线PA的距离为.所以的面积为.考

9、点:1.抛物线的几何性质;2.直线与圆的位置关系;3.直线与抛物线的位置关系.7. 已知三点,则外接圆的圆心到原点的距离为 15. 已知双曲线过点,且渐近线方程为,则该双曲线的标准方程为 【答案】8.已知椭圆()的左焦点为,则( )A B C D【答案】C13. 过点P(1,)作圆的两条切线,切点分别为A,B,则= . 【答案】15. 过双曲线的右焦点作一条与其渐近线平行的直线,交于点.若点的横坐标为,则的离心率为 .【答案】21. (本小题满分14分)平面直角坐标系中,已知椭圆C:的离心率为,且点(,)在椭圆C上.()求椭圆C的方程;()设椭圆E:,P为椭圆C上任意一点,过点P的直线交椭圆E

10、于A,B两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求面积的最大值.【答案】(I);(II)(i);(ii)试题分析:(I)由题意知又,解得.(II)由(I)知椭圆E的方程为.(i) 设由题意知.根据及 ,知.(ii)设将代入椭圆E的方程,可得,由可得应用韦达定理计算及的面积设将直线代入椭圆C的方程,可得,由可得由可知当且仅当,即时取得最大值由(i)知,的面积为即得 面积的最大值为试题解析:(I)由题意知又,解得,所以椭圆C的方程为(II)由(I)知椭圆E的方程为.(ii) 设由题意知.因为又,即所以,即(ii)设将代入椭圆E的方程,可得,由可得则有所以因为直线与轴交点的坐标为,所以的

11、面积设将直线代入椭圆C的方程,可得,由可得由可知故.当且仅当,即时取得最大值由(i)知,的面积为,所以面积的最大值为考点:1.椭圆的标准方程及其几何性质;2.直线与椭圆的位置关系;3.距离与三角形面积;4.转化与化归思想.5. 已知双曲线的一个焦点为,且双曲线的渐近线与圆相切,则双曲线的方程为( )(A) (B) (C) (D) 19. (本小题满分14分) 已知椭圆的上顶点为B,左焦点为,离心率为, (I)求直线BF的斜率;(II)设直线BF与椭圆交于点P(P异于点B),故点B且垂直于BF的直线与椭圆交于点Q(Q异于点B)直线PQ与x轴交于点M,. (i)求的值;(ii)若,求椭圆的方程.【

12、答案】(I)2;(II)(i) ;(ii)【解析】试题分析:(I)先由 及得,直线BF的斜率;(II)先把直线BF,BQ的方程与椭圆方程联立,求出点P,Q横坐标,可得(ii)先由得=,由此求出c=1,故椭圆方程为试题解析:(I) ,由已知 及 可得 ,又因为 ,故直线BF的斜率 .(II)设点 ,(i)由(I)可得椭圆方程为 直线BF的方程为 ,两方程联立消去y得 解得 .因为,所以直线BQ方程为 ,与椭圆方程联立消去y得 ,解得 .又因为 ,及 得 (ii)由(i)得,所以,即 ,又因为,所以=.又因为, 所以,因此 所以椭圆方程为9.将离心率为的双曲线的实半轴长和虚半轴长同时增加个单位 长

13、度,得到离心率为的双曲线,则( ) A对任意的, B当时,;当时, C对任意的, D当时,;当时,【答案】.22.(本小题满分14分)一种画椭圆的工具如图1所示是滑槽的中点,短杆ON可绕O转动,长杆MN通过N处铰链与ON连接,MN上的栓子D可沿滑槽AB滑动,且,当栓子D在滑槽AB内作往复运动时,带动N绕转动,M处的笔尖画出的椭圆记为C以为原点,所在的直线为轴建立如图2所示的平面直角坐标系()求椭圆C的方程;()设动直线与两定直线和分别交于两点若直线总与椭圆有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由【答案】()()当直线与椭圆在四个顶点处相切时,的面积取得最小值8. 【考点定位】本题考查椭圆的标准方程与直线与椭圆相交综合问题,属高档题.【名师点睛】作为压轴大题,其第一问将椭圆的方程与课堂实际教学联系在一起,重点考查学生信息获取与运用能力和实际操作能力,同时为椭圆的实际教学提供教学素材;第二问考查直线与椭圆相交的综合问题,借助函数思想进行求解.其解题的关键是注重基本概念的深层次理解,灵活运用所学知识.20. 设椭圆E的方程为点O为坐标原点,点A的坐标为,点B的坐标为(0,b),点M在线段AB上,满足直线OM的斜率为.()求E的离心率e;()设点C的坐标为(0,-b),N为线段AC的中点,证明:MNAB.15

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服