1、单击此处编辑母版标题样式,单击此处编辑母版文本样式,第二级,第三级,第四级,第五级,*,*,钢结构的焊接,章 介,1.,钢结构的连接方法,2,2.,焊接连接的特性,3.,对接焊缝的构造和计算,4.,角焊缝的构造和计算,5.,焊接残余应力与变形,6.,普通螺栓连接的构造与计算,7.,高强螺栓连接,3,一、,焊缝连接,钢结构的连接方法,对接焊缝连接,优点:不削弱截面,方便施工,连接刚度大;,缺点:材质易脆,存在残余应力,对裂纹敏感。,角焊缝连接,4,三、螺栓连接,优点:连接刚度大,传力可靠;,分为:,普通螺栓连接,高强度螺栓连接,二、铆钉连接,N,缺点:对施工技术要求很高,劳动强度大,施工条件差,
2、施工速度慢。,优点:拆装方便,缺点:板件有削弱,5,一、钢结构常用焊接方法,1.,手工电弧焊,A,、焊条的选择:,焊条应与焊件钢材相适应。,原理:利用电弧产生热量,熔化焊条和母材形,成焊缝。,焊接连接的特性,焊机,导线,熔池,焊条,焊钳,保护气体,焊件,电弧,6,Q390,、,Q420,钢选择,E55,型焊条,(E5500-5518),Q345,钢选择,E50,型焊条,(E5000-5048),B,、焊条的表示方法:,E,焊条,(,Electrode,),第,1,、,2,位数字为熔融金属的最小抗拉强度,(,kgf/mm,2,),第,3,、,4,适用焊接位置、电流及药皮的类型。,不同钢种的钢材焊
3、接,宜采用与低强度钢材相适应的焊条。,缺点:质量波动大,要求焊工等级高,劳动强度大,效率低。,优点:方便,特别在高空和野外作业,小型焊接;,Q235,钢选择,E43,型焊条(,E4300-E4328),C,、优、缺点,2.,埋弧焊(自动或半自动),7,、,、,、,、,、,、,、,、,、,、,、,、,、,、,、,、,、,、,、,焊丝转盘,送丝器,焊剂漏斗,焊剂,熔渣,焊件,埋弧自动焊,8,A,、焊丝的选择应与焊件等强度。,B,、优、缺点:,优点:自动化程度高,焊接速度快,劳动强度低,焊接质量好。,缺点:设备投资大,施工位置受限等。,送丝器,机器,3.,气体保护焊,9,优、缺点:,优点:焊接速度快
4、,焊接质量好。,缺点:施工条件受限制等。,二、焊接连接形式和焊缝形式,10,1.,焊接连接形式,对接,11,搭接,2.,焊缝形式,12,(,1,)对接焊缝,正对接焊缝,(,2,)角焊缝,T,型对接焊缝,斜对接焊缝,13,3.,焊缝位置,三、焊缝缺陷及焊缝质量检查,14,1.,焊缝缺陷,2.,焊缝质量检查,15,外观检查:检查外观缺陷和几何尺寸;,内部无损检验:检验内部缺陷。,内部检验主要采用超声,波,有时还用磁粉检验,荧光检验等辅助检验方,法。还可以采用,X,射线或,射线透照或拍片。,16,钢结构工程施工及验收规范,规定:,焊缝按其检验方法和质量要求分为一级、二级,和三级。,三级焊缝只要求对全
5、部焊缝作外观检查且符合,三级质量标准,。,一、二级焊缝除外观检查外,尚要求一定数量的超声波检验并符合相应级别的质量标准。,3.,焊缝质量等级及选用,17,钢结构设计规范,(,GB50017-2003,)中,对焊缝质量等级的选用有如下规定:,(1),需要进行疲劳计算的构件中,垂直于作用力方向的横向对接焊缝受拉时应为一级,受压时应为二级。,(2),在不需要进行疲劳计算的构件中,凡要求与母材等强的受拉对接焊缝应不低于二级;受压时宜为二级。,18,()重级工作制和起重量 的中级工作制吊车梁的腹板与上翼缘板之间以及吊车桁架上弦杆与节点板之间的形接头焊透的对接与角接组合焊缝,不应低于二级。,()角焊缝质量
6、等级一般为三级,直接承受动力荷载且需要验算疲劳和起重量的中级工作制吊车梁的角焊缝的外观质量应符合二级。,19,4.,焊缝代号,20,详细参见表,3-1,,图,3-13,一、对接焊缝的构造,21,1,、对接焊缝的坡口形式,:,对接焊缝的构造与计算,对接焊缝的焊件常做坡口,坡口形式与板厚和施工条件有关。,t-,焊件厚度,(1),当,:t6mm(,手工焊,),t20mm,时,宜采用,U,形、,K,形、,X,形坡口。,22,C=0.52mm,(,a,),C=23mm,(,b,),C=23mm,(,C,),p,(,d,),C=34mm,p,C=34mm,p,(,e,),C=34mm,p,(,f,),2,
7、、,V,形、,U,形坡口焊缝单面施焊,但背面需进行补焊;,3,、对接焊缝的起、灭弧点易出现缺陷,故一般用引弧板引出,焊完后将其切去;不能做引弧板时,每条焊缝的计算长度等于实际长度减去,2t,1,,,t,1,较薄焊件厚度;,4,、当板件厚度或宽度在一侧相差大于,4mm,时,应做坡度不大于,1:2.5(,静载,),或,1:4(,动载,),的斜角,以平缓过度,减小应力集中。,23,1:2.5,1:2.5,24,二、对接焊缝的计算,对接焊缝分为:焊透和部分焊透(自学)两种;,动荷载作用下部分焊透的对接焊缝不宜用做垂直受力方向的连接焊缝;,对于静载作用下的一级和二级对接焊缝其强度可视为与母材相同,不与计
8、算。三级焊缝需进行计算;,对接焊缝可视作焊件的一部分,故其计算方法与构件强度计算相同。,25,N,N,t,26,1,、,轴心力作用下的对接焊缝计算,式中:,N,轴心拉力或压力;,t,板件较小厚度;,T,形连接中为腹板厚度;,f,t,w,、,f,c,w,对接焊缝的抗拉和抗压强度设计值。,N,N,l,w,t,A,当不满足上式时,可采用斜对接焊缝连接如图,B,。,另,:,当,tan,1.5,时,不用验算,!,N,N,t,B,N,sin,N,cos,l,w,2,、,M,、,V,共同作用下的对接焊缝计算,27,l,w,t,A,M,V,因焊缝截面为矩形,,M,、,V,共同作用下应力图为:,故其强度计算公式
9、为:,式中:,W,w,焊缝截面模量;,S,w,-,焊缝截面面积矩;,I,w,-,焊缝截面惯性矩。,(,1,)板件间对接连接,(,2,),工字形截面梁对接连接计算,28,M,V,1,焊缝截面,A,、对于焊缝的,max,和,max,应满足式,3-2,和,3-3,要求;,max,1,1,max,B,、对于翼缘与腹板交接点焊缝(,1,点),其折算应,力尚应满足下式要求:,1.1,考虑最大折算应力只在局部出现的强度增大系数。,例,3.2,计算图,3-22,所示,T,形截面牛腿与柱翼缘连接的对接焊缝。牛腿翼缘板宽,130mm,,厚,12mm,,腹板高,200mm,,厚,10mm,。牛腿承受竖向荷载设计值,
10、V=100kN,,力作用点到焊缝截面距离,e=200mm,。钢材为,Q345,,焊条,E50,型,焊缝质量标准为三级,施焊时不加引弧板。,29,求解思路:,(,1,)受力特征,(3),有效截面及截面特性,(,4,)应力,(,2,)计算内容,(,5,)强度,习题:,3-2,一、角焊缝的形式和受力分析,30,h,e,h,f,h,f,普通式,h,e,h,f,1.5h,f,平坡式,1,、角焊缝的形式,:,角焊缝的构造与计算,直角角焊缝、斜角角焊缝,(,1,),直角角焊缝,h,e,h,f,h,f,凹面式,31,(,2,),斜角角焊缝,对于,135,o,或,6mm,时,,h,f,max,t-(1,2)mm
11、,;,h,f,t,1,t,2,、最小焊脚尺寸,h,f,min,为了避免在焊缝金属中由于冷却速度快而产生淬硬组织,导致母材开裂,,h,f,min,应满足以下要求,:,40,式中,:t,2,-,较厚焊件厚度,另,:,对于埋弧自动焊,h,f,min,可减去,1mm,;,对于,T,型连接单面角焊缝,h,f,min,应加上,1mm,;,当,t,2,4mm,时,h,f,min,=t,2,3.,侧面角焊缝的最大计算长度,侧面角焊缝在弹性工作阶段沿长度方向受力不均,两端大而中间小。焊缝长度越长,应力集中系数越大。如果焊缝长度不是太大,焊缝两端达到屈服强度后,继续加载,应力会渐趋均匀;当焊缝长度达到一定的长度后
12、,可能破坏首先发生在焊缝两端,故:,41,注,:,1,、当实际长度大于以上值时,计算时不与考虑;,2,、当内力沿侧焊缝全长分布时,不受上式限制。,4.,侧面角焊缝的最小计算长度,对于焊脚尺寸大而长度小的焊缝,焊件局部加热严重且起落弧坑相距太近,以及可能产生缺陷,使焊缝不可靠。故为了使焊缝具有一定的承载力,规范规定:,42,5.,搭接连接的构造要求,当板件端部仅采用两条侧面角焊缝连接时:,A,、为了避免应力传递的过分弯折而使构件中应力,不均,规范规定:,43,B,、为了避免焊缝横向收,缩时引起板件的拱曲,太大,规范规定:,t,1,t,2,b,D.,在,搭接连接中,搭接长度不得小于焊件较小厚度 的
13、,5,倍,且不得小于,25mm,。,44,C.,当角焊缝的端部位于构件转角处时,应作,2h,f,的,绕,角焊,,且转角处必须连续施焊。,b,2h,f,t,1,t,2,三、直角角焊缝的强度计算公式,1,、,试验表明,直角角焊缝的破坏常发生在,喉部,,故通常将,45,o,截面作为计算截面,作用在该截面上的应力如下图所示:,45,h,f,h,e,h,h,1,h,2,d,e,h,e,l,w,h-,焊缝厚度、,h,1,熔深,h,2,凸度、,d,焊趾、,e,焊根,2,、,实际上计算截面的各应力分量的计算比较繁难,为了简化计算,规范假定:,焊缝在有效截面处破坏,,且破坏时各应力分量满足以下折算应力公式,:,
14、46,3,、,由于我国规范给定的角焊,缝强度设计值,是根据抗剪条,件确定的故上式又可表达为:,式中:,-,焊缝金属的抗拉强度,h,e,l,w,4,、,直角角焊缝的强度计算公式:,47,N,N,y,N,x,f,=,f,h,e,l,w,45,O,45,O,h,f,48,将能量强度条件可得:,上式即为规范给定的角焊缝强度计算通用公式,f,正面角焊缝强度增大系数;,静载时取,1.22,,动载时取,1.0,。,49,对于正面角焊缝,,f,=0,,可得:,对于侧面角焊缝,,f,=0,,可得:,以上各式中:,h,e,=0.7h,f,;,l,w,角焊缝计算长度,考虑起灭弧缺陷时,每条焊缝取其,实际长度减去,2
15、h,f,。,50,四、各种受力状态下的直角角焊缝连接计算,1,、轴心力作用下,(1),轴心力作用下的盖板对接连接,:,A,、,仅采用侧面角焊缝连接:,B,、采用三面围焊连接:,N,N,l,w,l,w,51,(2),T,形角焊缝连接,N,x,N,y,N,N,代入式,3-13,验算焊缝强度,即,:,52,(3),角钢角焊缝连接,A,、仅采用侧面角焊缝连接,由力及力矩平衡得,:,故,:,N,e,1,e,2,b,N,1,N,2,x,x,l,w1,l,w2,53,54,对于校核问题,:,对于设计问题,:,N,e,1,e,2,b,N,1,N,2,x,x,l,w1,l,w2,55,B,、,采用三面围焊,由力
16、及力矩平衡得,:,余下的问题同情况,A,,即,:,N,e,1,e,2,b,N,1,N,2,x,x,N,3,l,w1,l,w2,56,对于校核问题,:,对于设计问题,:,N,e,1,e,2,b,N,1,N,2,x,x,N,3,l,w1,l,w2,57,C,、采用,L,形围焊,由平衡条件可得,:,对于设计问题,:,N,e,1,e,2,b,N,1,x,x,N,3,l,w1,58,2,、,N,、,M,、,V,共同作用下,(1,),偏心轴力作用下角焊缝强度计算,N,e,N,x,N,y,M,A,Nx,M,Ny,h,e,h,e,t,59,(,2,),V,、,M,共同作用下焊缝强度计算,h,1,fA,fB,f
17、,对于,A,点:,式中:,I,w,全部焊缝有效截面对中和轴的惯性矩;,h,1,两翼缘焊缝最外侧间的距离。,x,x,h,h,2,B,B,A,h,1,M,e,F,V,M,60,对于,B,点:,强度验算公式:,式中:,h,2,、,l,w,2,腹板焊缝的计算长度;,h,e,2,腹板焊缝截面有效高度。,h,1,f1,f2,f,x,x,h,h,2,B,B,A,h,1,M,V,M,3,、,T,、,V,共同作用下,将,F,向焊缝群形心,简化得,:,V=F,T=F(e,1,+e,2,),61,假定,:,A,、被连接件绝对刚性,焊缝为弹性,即:,T,作用下被连接件有绕焊缝形心旋转的趋势;,B,、,T,作用下焊缝群
18、上任意点的应力方向垂直于该点与焊缝形心的连线,且大小与,r,成正比;,C,、在,V,作用下,焊缝群上的应力均匀分布。,F,e,1,e,2,x,0,l,1,l,2,x,x,y,y,A,A,0,T,V,r,故:该连接的设计控制点,为,A,点和,A,点,62,x,x,y,y,r,r,x,r,y,A,TAx,TAy,TA,0,Vy,h,e,T,作用下,A,点应力,:,将其沿,x,轴,和,y,轴分解,:,e,2,x,0,l,1,l,2,x,x,y,y,A,A,0,T,V,r,侧缝,正缝,63,剪力,V,作用下,A,点应力,:,A,点垂直于焊缝长度方,向的应力为,:,A,点平行于焊缝长度方,向的应力为,:
19、,强度验算公式:,思考,:,以上计算方法为近似计算,为什么,?,V,x,x,y,y,r,r,x,r,y,A,TAx,TAy,TA,0,Vy,h,e,焊接残余应力和变形,一、焊接残余应力的分类及其产生的原因,1,、焊接残余应力的分类,A,、纵向焊接残余应力,沿焊缝长度方向,;,B,、横向焊接残余应力,垂直于焊缝长度方向,;,C,、沿厚度方向的焊接残余应力。,2,、焊接残余应力产生的原因,(,1,)纵向焊接残余应力,64,65,焊接过程是一个不均匀的加热和冷却过程,焊件上产生不均匀的温度场,焊缝处可达,1600,o,C,,而邻近区域温度骤降。高温钢材膨胀大,但受到两侧温度低、膨胀小的钢材限制,产生
20、热态塑性压缩,焊缝冷却时被塑性压缩的焊缝区趋向收缩,但受到两侧钢材的限制而产生拉应力。对于低碳钢和低合金钢,该拉应力可以使钢材达到屈服强度。焊接残余应力是无荷载的内应力,故在焊件内自相平衡,这必然在焊缝稍远区产生压应力。,+,-,-,500,o,C,800,o,C,300,o,C,300,o,C,500,o,C,800,o,C,施焊方向,8cm,6,4,2,0,2,4,6,8cm,-,-,-,-,-,+,+,(,2,)横向焊接残余应力,产生的原因,:,1,、焊缝的纵向收缩,使焊件有反向弯曲变形的趋势,导致两焊件在焊缝处,中部受拉,两端受压,;,2,、焊接时已凝固的先焊焊缝,阻止后焊焊缝的横向膨
21、胀,产生横向塑性压缩变形。,焊缝冷却时,后焊焊缝的收缩受先焊焊缝的限制而产生拉应力,而先焊焊缝产生压应力,因应力自相平衡,更远处焊缝则产生拉应力,;,应力分布与施焊方向有关,。,以上两种应力的组合即为,横向焊接残余应力,。,66,67,(a),焊缝纵向收缩 时的变形趋势,-,+,-,(b),焊缝纵向收缩 时的横向应力,x,y,+,-,+,施焊方向,(c),焊缝横向收缩 时的横向应力,x,y,-,+,-,+,(d),焊缝横向,残余应力,y,x,不同施焊方向下,焊缝横向收缩时产生的横向残余应力,:,-,+,+,施焊方向,(e),-,+,-,施焊方向,(f),x,y,y,x,(,3,)沿厚度方向的焊
22、接残余应力,在厚钢板的焊接连接中,焊缝需要多层施焊,焊接时沿厚度方向已凝固的先焊焊缝,阻止后焊焊缝的膨胀,产生塑性压缩变形。焊缝冷却时,后焊焊缝的收缩受先焊焊缝的限制而产生拉应力,而先焊焊缝产生压应力,因应力自相平衡,更远处焊缝则产生拉应力。因此,除了横向和纵向焊接残余应力,x,y,外,还存在沿厚度方向的焊接残余应力,z,,这三种应力形成同号,(,受拉,),三向应力,大大降低连接的塑性。,68,-,+,-,321,x,y,z,二、焊接残余应力对结构性能的影响,1,、对结构静力强度的影响,69,f,+,-,-,b,f,y,+,-,-,b,f,y,N,y,N,y,因焊接残余应力自相平衡,故:,当板
23、件全截面达到,f,y,,即,N=N,y,时:,结论:,焊接残余应力,对结构的静力强度没有影响。,+,-,-,f,y,f,b,B,t,2,、对结构刚度的影响,70,A,、当焊接残余应力存在时,因截面的,bt,部分拉应力已经达到,f,y,,故该部分刚度为零(屈服),这时在,N,作用下应变增量为:,f,+,-,-,b,f,y,N,N,+,-,-,f,y,f,N,N,b,B,t,B,、当截面上没有焊接残余应力时,在,N,作用下应变增量为:,因为,B-b,2,。,71,结论:,焊接残余应力的存在增大了结构的变形,即降低了结构的刚度。,另外,对于轴心受压构件,焊接残余应力使其挠,曲刚度减小,降低压杆的稳定
24、承载力(详见第,4,章)。,3,、对低温冷脆的影响,对于厚板或交叉焊缝,将产生三向焊接残余拉应力,限制了其塑性的发展,增加了钢材低温脆断倾向。,所以,降低或消除焊接残余应力是改善结构低温冷脆性能的重要措施。,72,4,、对疲劳强度的影响,在焊缝及其附近主体金属焊接残余拉应力通常达到钢材的屈服强度,此部位是形成和发展疲劳裂纹的敏感区域。因此焊接残余应力对结构的疲劳强度有明显的不利影响。,三、焊接变形,焊接变形包括:纵向收缩、横向收缩、弯曲变形、角变形和扭曲变形等,通常是几种变形的组合。,73,74,75,76,77,78,四、减小焊接残余应力和焊接变形的措施,1,、,设计上的措施;,(,1,)焊
25、接位置的合理安排,(,2,)焊缝尺寸要适当,(,3,)焊缝数量要少,且不宜过分集中,(,4,)应尽量避免两条以上的焊缝垂直交叉,(,5,)应尽量避免母材在厚度方向的收缩应力,2,、加工工艺上的措施,(,1,)采用合理的施焊顺序,(,2,)采用反变形处理,(,3,)小尺寸焊件,应焊前预热或焊后回火处理,79,80,一、普通螺栓的种类和构造要求,81,普通螺栓连接构造与计算,(一)普通螺栓种类,C,级,-,粗制螺栓,性能等级为,4.6,或,4.8,级;,4,表示,f,u,400N/mm,2,0.6,或,0.8,表示,f,y,/f,u,=0.6,或,0.8,;,类孔,孔径,(d,o,)-,栓杆直径,
26、(d),1,3mm,。,A,、,B,级,-,精制螺栓,性能等级为,5.6,或,8.8,级,;,5,或,8,表示,f,u,500,或,800N/mm,2,0.6,或,0.8,表示,f,y,/f,u,=0.6,或,0.8,;,类孔,孔径,(d,o,)-,栓杆直径,(d),0.3,0.5mm,。,按其加工的精细程度和强度分为,:,A,、,B,、,C,三个级别。,82,(二)螺栓的排列,1.,并列,简单、整齐、紧凑所用连接板尺寸小,但构,件截面削弱大;,B,错列,A,并列,中距,中距,边距,边距,端距,2.,错列,排列不紧凑,所用连接板尺寸大,但构件截,面削弱小;,3.,螺栓排列的要求,(,1,)受力
27、要求,:,垂直受力方向:,为了防止螺栓应力集中相互影响、截面削弱过多而降低承载力,螺栓的边距和端距不能太小;,顺力作用方向:,为了防止板件被拉断或剪坏,端距不能太小;,对于受压构件:,为防止连接板件发生鼓曲,中距不能太大。,(,2,)构造要求;,螺栓的边距和中距不宜太大,以免板件间贴合不密,潮气侵入腐蚀钢材。,83,(,3,)施工要求,为了便于扳手拧紧螺母,螺栓中距应不小于,3d,o,。,根据以上要求,规范给定了螺栓的容许间距。,84,(三)螺栓连接的构造要求,为了保证连接的可靠性,每个杆件的节点或拼接接头一端不宜少于两个永久螺栓,但组合构件的缀条除外;,直接承受动荷载的普通螺栓连接应采用双螺
28、帽,或其他措施以防螺帽松动;,C,级螺栓宜用于沿杆轴方向的受拉连接,以下情况可用于抗剪连接:,1,、承受静载或间接动载的次要连接;,2,、承受静载的可拆卸结构连接;,3,、临时固定构件的安装连接。,85,86,二、螺栓连接的受力形式,F,N,F,A,只受剪力,B,只受拉力,C,剪力和拉力共同作用,三、普通螺栓抗剪连接,(一)工作性能和破坏形式,1.,工作性能,对图示螺栓连接做抗剪试验,即可得到板件上,a,、,b,两点相对位移,和作用力,N,的关系曲线,该曲线清楚的揭示了抗剪螺栓受力的四个阶段,即:,(1),摩擦传力的弹性阶段,(0,1,段,),直线段,连接处于弹性状态;,该阶段较短,摩擦力较小
29、。,87,N,O,1,2,3,4,N,N,a,b,N,N/2,N/2,(2),滑移阶段,(1,2,段,),克服摩擦力后,板件间突然发生水平滑移,最大滑移量为栓孔和栓杆间的距离,表现在曲线上为水平段。,88,N,O,1,2,3,4,a,b,N,N/2,N/2,(3),栓杆传力的弹性阶段,(2,3,段,),该阶段主要靠栓杆与孔壁的接触传力。栓杆受剪力、拉力、弯矩作用,孔壁受挤压。由于材料的弹性以及栓杆拉力增大所导致的板件间摩擦力的增大,,N-,关系以曲线状态上升。,(4),弹塑性阶段,(3,4,段,),达到,3,后,即使给荷载以很小的增量,连接的剪切变形迅速增大,直到连接破坏。,4,点(曲线的最高
30、点)即为普通螺栓抗剪连接的极限承载力,N,u,。,89,N,O,1,2,3,4,a,b,N,N/2,N/2,N,u,2.,破坏形式,(,1,)螺栓杆被剪坏,栓杆较细而板件较厚时,(,2,)孔壁的挤压破坏,栓杆较粗而板件较薄时,(,3,)板件被拉断,截面削弱过多时,以上破坏形式予以计算解决。,90,N/2,N,N/2,N,N,N,N,(,4,)板件端部被剪坏,(,拉豁,),端矩过小时;端矩不应小于,2d,O,91,N,N,(,5,)栓杆弯曲破坏,螺栓杆过长;栓杆长度不应大于,5d,这两种破坏构造解决,N/2,N,N/2,(二)抗剪螺栓的单栓承载力设计值,由破坏形式知,抗剪螺栓的承载力取决于螺栓杆
31、受剪和孔壁承压两种情况,故单栓抗剪承载力由以下两式决定,:,92,n,v,剪切面数目,;,d,螺栓杆直径;,f,v,b,、,f,c,b,螺栓抗剪和承压强度设计值;,t,连接接头一侧承压构件总厚度的较小值。,单栓抗剪承载力:,抗剪承载力:,承压承载力:,d,剪切面数目,n,v,93,N,N,N,N/2,N/2,N/2,N/3,N/3,N/3,N/2,(三)普通螺栓群抗剪连接计算,1,、普通螺栓群轴心力作用下抗剪计算,94,N/2,N,l,1,N/2,平均值,螺栓的内力分布,试验证明,栓群在轴力作用下各个螺栓的内力沿栓群长度方向不均匀,两端大,中间小。,当,l,1,15d,0,(d,0,为孔径,)
32、,时,连接进入弹塑性工作状态后,内力重新分布,各个螺栓内力趋于相同,故设计时假定,N,有各螺栓均担。,所以,连接所需螺栓数为:,当,l,1,15d,0,(d,0,为孔径,),时,连接进入弹塑性工作状态后,即使内力重新分布,各个螺栓内力也难以均匀,端部螺栓首先破坏,然后依次破坏。由试验可得连接的抗剪强度折减系数,与,l,1,/d,0,的关系曲线。,95,ECCS,试验曲线,8.8,级,M22,我国规范,1.0,0.75,0.5,0.25,0,10 20 30 40 50 60 70 80,l,1,/d,0,平均值,长连接螺栓的内力分布,故,连接所需栓数:,150,1,.,1,60,15,0,1,
33、0,1,0,-,=,d,l,d,l,d,h,时:,当,普通螺栓群轴心力作用下,为了防止板件被拉断尚应进行板件的净截面验算。,拼接板的危险截面为,2-2,截面,:,96,N,N,b,t,t,1,b,1,A,、螺栓采用并列排列时,:,主板的危险截面为,1-1,截面,:,1,1,2,2,97,N,N,t,t,1,b,c,2,c,3,c,4,c,1,B,、螺栓采用错列排列时,:,主板的危险截面为,1-1,和,1-1,截面,:,1,1,1,1,98,N,N,b,t,t,1,b,1,c,2,c,3,c,4,c,1,拼接板的危险截面为,2-2,和,2-2,截面,:,2,2,2,2,2,、普通螺栓群偏心力作用
34、下抗剪计算,F,作用下每个螺栓受力,:,99,F,e,F,T,T,x,y,N,1T,N,1Tx,N,1Ty,r,1,1,F,1,N,1F,T,作用下连接按弹性设计,其假定为,:,(,1,),连接板件绝对刚性,螺栓为弹性;,(,2,),T,作用下连接板件绕栓群形心转动,各螺栓剪力与其至形心距离呈线形关系,方向与,r,i,垂直。,100,T,x,y,N,1T,N,1Tx,N,1Ty,r,1,1,显然,,T,作用下,1,号螺栓所受剪力最大(,r,1,最大)。,由假定,(2),得,由上式可得,:,由力的平衡条件得:,101,T,x,y,N,1T,N,1Tx,N,1Ty,r,1,1,从而可得,:,将,N
35、,1T,沿坐标轴分解得,:,由此可得螺栓,1,的强度验算公式为,:,102,另外,当螺栓布置比较狭长,(,如,y,1,3x,1,),时,可进行如下简化计算:,令,:x,i,=0,,则,N,1Ty,=0,四、普通螺栓的抗拉连接,103,(一)普通螺栓抗拉连接的工作性能,抗拉螺栓连接在外力作用下,连接板件接触面有脱开趋势,螺栓杆受杆轴方向拉力作用,以栓杆被拉断为其破坏形式。,(二),单,个普通螺栓的抗拉承载力设计值,式中:,A,e,-,螺栓的有效截面面积;,d,e,-,螺栓的有效直径;,f,t,b,-,螺栓的抗拉强度设计值。,公式的两点说明:,(,1,)螺栓的有效截面面积,因栓杆上的螺纹为斜方向的
36、,所以公式取的是有效直径,d,e,而不是净直径,d,n,,现行国家标准取:,104,d,e,d,n,d,m,d,(2,)螺栓垂直连接件的刚度对螺栓抗拉承载力的影响,A,、螺栓受拉时,一般是通过与螺杆垂直的板件传递,即螺杆并非轴心受拉,当连接板件发生变形时,螺栓有被撬开的趋势(杠杆作用),使螺杆中的拉力增加(撬力,Q,)并产生弯曲现象。连接件刚度越小撬力越大。试验证明影响撬力的因素较多,其大小难以确定,规范采取简化计算的方法,取,f,t,b,=0.8f,(,f,螺栓钢材的抗拉强度设计值)来考虑其影响。,105,B,、在构造上可以通过加强连接件的刚度的方法,来减小杠杆作用引起的撬力,如,设加劲肋,
37、,可以减小甚至消除撬力的影响。,106,(,三)普通螺栓群的轴拉设计,107,一般假定每个螺栓均匀受力,因此,连接所需的螺栓数为:,N,108,(,四)普通螺栓群在弯炬作用下,M,刨平顶紧,承托,(,板,),M,1 2 3 4,受压区,y,1,y,2,y,3,N,1,N,2,N,3,N,4,中和轴,M,作用下螺栓连接按弹性设计,其假定为,:,(,1,)连接板件绝对刚性,螺栓为弹性;,(,2,)螺栓群的中和轴位于最下排螺栓的形心处,各,螺栓所受拉力与其至中和轴的距离呈正比。,109,显然,1,号螺栓在,M,作用下所受拉力最大,由力学及假定可得:,M,刨平顶紧,承托,(,板,),M,1 2 3 4
38、,受压区,y,1,y,2,y,3,N,1,N,2,N,3,N,4,中和轴,同前可得,:,110,强度要求为:,111,(,五),普通螺栓群在偏心拉力作用下,偏心力,作用下普通螺栓连接,可采用偏于安全的设计方法,即,叠加法,。,刨平顶紧,承托,(,板,),F,e,N,1F,1 2 3 4,F,M,y,1,y,2,y,3,N,1M,N,2M,N,3M,M=F,e,中和轴,N,4M,五、,普通螺栓拉、剪联合作用,112,0,1,1,V,e,M=Ve,V,因此:,2,、由试验可知,兼受剪力和拉力,的螺杆,其承载力无量纲关系,曲线近似为一,“,四分之一圆,”,。,1,、普通螺栓在拉力和剪力的共同,作用下
39、,可能出现两种破坏形,式:,螺杆受剪兼受拉破坏、孔,壁的承压破坏;,3,、计算时,假定剪力由螺栓群均,匀承担,拉力由受力情况确定。,规范规定:普通螺栓拉、剪联合作用为了防止,螺杆受剪兼受拉破坏,应满足:,为了防止孔壁的承压破坏,应满足:,113,0,1,1,a,b,另外,,拉力和剪力共同作用下的普通螺栓连接,当,有承托承担全部剪力时,,螺栓群按受拉连接计算。,承托与柱翼缘的连接角焊缝按下式计算:,114,式中:,考虑剪力对角焊缝偏心影响的增大系数,,一般取,=1.25,1.35,;,其余符号同前。,M,刨平顶紧,承托,(,板,),V,连接角焊缝,高强度,螺栓连接计算,115,高强螺栓由,45,
40、号、,40B,和,20MnTiB,钢加工而成,并经过热处理,45,号,8.8,级;,40B,和,20MnTiB,10.9,级,(,a,)大六角头螺栓,(,b,)扭剪型螺栓,一、高强度螺栓的工作性能及单栓承载力,按受力特征的不同,高强度螺栓分为两类:,摩擦型高强度螺栓,通过板件间摩擦力传递内力,,破坏准则为克服摩擦力;,承压型,高强度螺栓,受力特征与普通螺栓类似。,1,、高强度螺栓预拉力的建立方法,通过拧紧螺帽的方法,螺帽的紧固方法:,A,、转角法,施工方法:,初拧,用普通扳手拧至不动,使板件贴紧密;,116,终拧,初拧基础上用长扳手或电动扳手再拧过一定的 角度,一般为,120,o,180,o,
41、完成终拧。,特点:预拉力的建立简单、有效,但要防止欠拧、漏拧,和超拧;,B,、扭矩法,施工方法:,初拧,用力矩扳手拧至终拧力矩的,30%,50%,,使,板件贴紧密;,终拧,初拧基础上,按,100%,设计终拧力矩拧紧。,特点:简单、易实施,但得到的预拉力误差较大。,117,C,、扭断螺栓杆尾部法(扭剪型高强度螺栓),施工方法:,初拧,拧至终拧力矩的,60%,80%,;,终拧,初拧基础上,以扭断螺栓杆尾部为准。,特点:施工简单、技术要求低易实施、质量易保证等,高强度螺栓的施工要求:,由于高强度螺栓的承载力很大程度上取决于螺栓杆的预拉力,因此施工要求较严格:,1,)终拧力矩偏差不应大于,10%,;,
42、2,)如发现欠、漏和超拧螺栓应更换;,3,)拧固顺序先主后次,且当天安装,当天终拧完。,如工字型梁为:上翼缘下翼缘腹板。,118,2,、高强度螺栓预拉力的确定,高强度螺栓预拉力是根据螺栓杆的有效抗拉强度确定的,并考虑了以下修正系数:,考虑材料的不均匀性的折减系数,0.9,;,为防止施工时超张拉导致螺杆破坏的折减系数,0.9,;,考虑拧紧螺帽时,螺栓杆上产生的剪力对抗拉强度的降低除以系数,1.2,。,附加安全系数,0.9,。,因此,预拉力:,119,A,e,螺纹处有效截面积;,f,u,螺栓热处理后的最抵抗拉强度;,8.8,级,取,f,u,=830N/mm,2,,,10.9,级,取,f,u,=10
43、40N/mm,2,3,、高强度螺栓摩擦面抗滑移系数,摩擦型高强度螺栓是通过板件间摩擦力传递内力的,而摩擦力的大小取决于板件间的挤压力(,P,)和板件间的抗滑移系数,;,板件间的抗滑移系数与接触面的处理方法和构件钢号有关,其大小随板件间的挤压力的减小而减小;,120,规范给出了预拉力值和不同钢材在不同接触面处理方法下的抗滑移系数,如下表,121,4,、高强度螺栓抗剪连接的工作性能和单栓承载力,(1),抗剪连接工作性能,受力过程与普通螺栓相似,,分为四个阶段:摩擦传力的弹性,阶段、滑移阶段、栓杆传力的弹,性阶段、弹塑性阶段。,但比较两条,N,曲线可知,,由于高强度螺栓因连接件间存在,很大的摩擦力,
44、故其第一个阶段,远远大于普通螺栓。,122,高强度螺栓,N,O,1,2,3,4,1,2,3,4,普通螺栓,a,b,N,N/2,N/2,A,、对于高强度螺栓,摩擦型,连接,,其破坏准则为板件发生相对滑移,因此其极限状态为,1,点而不是,4,点,所以,1,点的承载力即为一个高强度螺栓摩擦型连接的抗剪承载力:,123,N,O,1,2,3,4,1,2,3,4,高强度螺栓,普通螺栓,a,b,N,N/2,N/2,式中:,0.9,抗力分项系数,R,的倒,数,(,R,=1.111);,n,f,传力摩擦面数目,;,-,摩擦面抗滑移系数,;,P,预拉力设计值,.,(,2,)抗剪连接单栓承载力,B,、对于高强度螺栓
45、,承压型抗剪连接,,允许接触面发生相对滑移,破坏准则为连接达到其极限状态,4,点,所以高强度螺栓承压型连接的单栓抗剪承载力计算方法与普通螺栓相同。,124,N,O,1,2,3,4,1,2,3,4,高强度螺栓,普通螺栓,单栓抗剪承载力:,抗剪承载力,:,承压承载力,:,5,、高强度螺栓抗拉连接工作性能和单栓承载力,当外拉力为零,即,N,=0,时:,P=C,;,当外拉力为,N,t,时:板件有被拉开趋势,板件间的压力,C,减小为,C,f,,栓杆拉力,P,增加为,P,f,,由力及变形协调得:,125,N,P,C,P,+,P=P,f,C,-,C=C,f,N,t,A,b,栓杆截面面积;,A,p,板件挤压面
46、面积;,板叠厚度。,当板件即将被拉开时:,C,f,=0,,有,P,f,=,N,t,,因此:,一般板件间的挤压面面积比栓杆截面面积大的多,近似取,A,P,/A,b,=10,,得:,126,显然栓杆的拉力增加不大。,另外,试验证明,当栓杆的外加拉力大于,P,时,卸载后螺栓杆的预拉力将减小,即发生,松弛现象,。但当,N,t,不大于,0.8P,时,则无松弛现象,这时,P,f,=1.07P,,可认为螺杆的预拉力不变,且连接板件间有一定的挤压力保持紧密接触,所以现行规范规定:,P,+,P=P,f,C,-,C=C,f,N,t,A,、,摩擦型高强度螺栓的单栓抗拉承载力为,:,上式未考虑橇力的影响,当考虑橇力影
47、响时,螺栓杆的拉力,P,f,与,N,t,的关系曲线如图:,N,t,0.5P,时,橇力,Q=0,;,N,t,0.5P,后,橇力,Q,出现,增加速度先慢后快。,橇力,Q,的存在导致连接的极限承载力由,N,u,降至,N,u,。,所以,如设计时不考虑橇力的影响,应使,N,t,0.5P,或增加连接板件的刚度(如设加劲肋)。,127,300,250,200,150,100,50,0,50 100 150 200 250 300,P,f,(KN),N,u,N,u,N,t,(KN),2N,N,N,Q,Q,19,51,8.8,级,M22,P=150KN,Q,有橇力时的螺栓破坏,无橇力时的螺栓破坏,B,、,承压型
48、高强度螺栓的单栓抗拉承载力,因其破坏准则为螺栓杆被拉断,故计算方法与普通螺栓相同,即:,128,式中:,A,e,-,螺栓杆的有效截面面积;,d,e,-,螺栓杆的有效直径;,f,t,b,高强度螺栓的抗拉强度设计值。,上式的计算结果与,0.8P,相差不多。,6,、高强度螺栓连接在拉力和剪力共同作用下的工作性能和单栓承载力,(,1,)高强度螺栓摩擦型连接,尽管当,N,t,P,时,栓杆的预拉力变化不大,但由于,随,N,t,的增大而减小,且随,N,t,的增大板件间的挤压力减小,故连接的抗剪能力下降。规范规定在,V,和,N,共同作用下应满足下式:,129,(,2,)高强度螺栓承压型连接,对于高强度螺栓承压
49、型连接在剪力和拉力共同作用下计算方法与普通螺栓相同。,130,为了防止孔壁的承压破坏,应满足:,系数,1.2,是考虑由于外拉力的存在导致高强度螺栓的承压承载力降低的修正系数。,二、高强度螺栓群的抗剪计算,1,、轴心力作用,假定各螺栓受力均匀,故所需螺栓数:,131,对于摩擦型连接:,对于承压型连接:,N,N,高强度螺栓群轴心力作用下,为了防止板件被拉断尚应进行板件的净截面验算,.,132,N,N,b,t,t,1,b,1,A,、高强度螺栓摩擦型连接,主板的危险截面为,1-1,截面。,1,1,考虑孔前传力,50%,得:,1-1,截面的内力为:,133,N,N,b,t,t,1,b,1,拼接板的危险截
50、面为,2-2,截面。,2,2,考虑孔前传力,50%,得:,2-2,截面的内力为:,B,、高强度螺栓承压型连接的净截面验算与普通螺栓的净截面验算完全相同。,2,、,扭矩或扭矩、剪力共同作用下,计算方法与普通螺栓相同,即:,134,F,T,T,x,y,N,1T,N,1Tx,N,1Ty,r,1,1,F,1,N,1F,剪力,F,作用下每个螺栓受力,:,扭矩,T,作用下:,135,由此可得螺栓,1,的强度验算公式为,:,三、高强度螺栓群的抗拉计算,1,、轴心力作用,假定各螺栓均匀受力,故所需螺栓数:,136,N,2,、弯矩作用下,由于高强度螺栓的抗拉承载力一般总小于其预拉力,P,,故在弯矩作用下,连接板