1、2012年河南省初中学业水平暨高级中等学校招生试卷数学13、如图,点A,B在反比例函数的图像上,过点A,B作轴的垂线,垂足分别为M,N,延长线段AB交轴于点C,若OM=MN=NC,AOC的面积为6,则k值为 14、如图,在中, 把ABC绕AB边上的点D顺时针旋转90得到,交AB于点E,若AD=BE,则的面积为 15、如图,在中,点D是BC边上一动点(不与点B、C重合),过点D作DEBC交AB边于点E,将沿直线DE翻折,点B落在射线BC上的点F处,当AEF为直角三角形时,BD的长为 23(2012金华市)在锐角ABC中,AB=4,BC=5,ACB=45,将ABC绕点B按逆时针方向旋转,得到A1B
2、C1(1)如图1,当点C1在线段CA的延长线上时,求CC1A1的度数;(2)如图2,连接AA1,CC1若ABA1的面积为4,求CBC1的面积;(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质。解答:解:(1)由旋转的性质可得:A1C1B=ACB=45,BC=BC1,CC1B=C1CB=45,.(2分)CC1A1=CC1B+A1C1B=45+45=90(3分)(2)ABCA1BC1,BA=BA1,BC=BC1,ABC=A1BC1,A
3、BC+ABC1=A1BC1+ABC1,ABA1=CBC1,ABA1CBC1(5分),SABA1=4,SCBC1=;(7分)(3)过点B作BDAC,D为垂足,ABC为锐角三角形,点D在线段AC上,在RtBCD中,BD=BCsin45=,(8分)如图1,当P在AC上运动至垂足点D,ABC绕点B旋转,使点P的对应点P1在线段AB上时,EP1最小,最小值为:EP1=BP1BE=BDBE=2;(9分)当P在AC上运动至点C,ABC绕点B旋转,使点P的对应点P1在线段AB的延长线上时,EP1最大,最大值为:EP1=BC+AE=2+5=7(10分)28已知,在RtOAB中,OAB=90,BOA=30,AB=
4、2若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内将RtOAB沿OB折叠后,点A落在第一象限内的点C处(1)求点C的坐标;(2)若抛物线经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由【答案】解:(1)过C作CHOA于H, 在RtOAB中,OAB=90,BOA=30,AB=2,OA=。将RtOAB沿OB折叠后,点A落在第一象限内的点C处,OC=OA=,AOC=60。OH=,CH=3 。C的坐标是(,3)。 (2)抛物线经过C(,3)、A(,0)两点, ,解得。此抛物线的解析式为(3)存在。的顶点坐标为(,3),即为点C。 MPx轴,设垂足为N,PNt,BOA300,所以ON P() 作PQCD,垂足为Q,MECD,垂足为E。把代入得:。 M(,),E(,)。 同理:Q(,t),D(,1)。 要使四边形CDPM为等腰梯形,只需CEQD, 即,解得:,(舍去)。 P点坐标为(,)。 存在满足条件的点P,使得四边形CDPM为等腰梯形,此时P点的坐为(,)。