资源描述
浙大学生家教网()
第一章复习
1、以下不能构成三角形三边长的数组是( )
A、(1,,2) B、(3,4,5) C、(,,) D、(,,)
2、在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=2∶3∶4,③∠A=90°-∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有( )A、1个; B、2个; C、3个; D、4个
A
D
C
E
B
3、如图,在中, ,是的垂直平分线,交于点
,交于点.已知,则的度数为( )
A. B. C. D.
4、下列说法中,正确的是( )
A、关于某直线对称的两个三角形一定是全等的 B、全等的两个三角形一定关于某条直线对称
A
B
C
D
C、有一条公共边的两个全等三角形一定关于公共边所在的直线对称
D、关于某条直线对称的两个图形一定分别位于该直线两侧
5、三角形的三个外角之比为,则与之相应的三个内角之比为( )
A. B. C. D.
6、如图,一块试验田的形状是三角形(设其为),管理员从边上的一点出发,沿的方向走了一圈回到处,则管理员从出发到回到原处在途中身体 ( )
A.转过 B.转过 C.转过 D.转过
7、如图,给出下列四组条件:
①;②;
③;④.
其中,能使的条件共有( )
A.1组 B.2组 C.3组 D.4组
8、如图,AC=AD,BC=BD,则有( )
A.AB垂直平分CD B.CD垂直平分AB
C.AB与CD互相垂直平分 D.CD平分∠ACB
9、用尺规作已知角平分线,其根据是构造两个三角形全等,它所用到的识别方法是( )
A.SAS B.ASA C.AAS D.SSS
10、如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将
△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于( )
A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5
11、用12根火柴棒(等长)拼成一个三角形,火柴棒不允许剩余、重叠和折断,则能摆出不同的三角形的个数是( )A、1 B、2 C、3 D、4
12、三角形的两边为3和5,则周长m的范围是( )
A、6<m<15 B、6<m<16 C、11<m<13 D、10<m<16
图7-7
13、如图7-7,C在AB的延长线上,CE⊥AF于E,交FB于D,
若∠F=40°,∠C=20°,则∠FBA的度数为( ).
A.50° B.60° C.70° D.80°
14、、在△ABC中,若∠A-∠B=90°,则此三角形是________三角形;
若,由此三角形是_______三角形;
A
15、若a,b,c为三角形的三边长,此三角形周长为18cm,且则a=______,b=______,c=______
16、在△ABC中,若∠B-∠A=15°,∠C-∠B=60°,则∠C=
O
D
E
17、如图9,△ABC中,AB=AC,BD、CE分别是AC、AB边上的高,BD、CE交于点O,且AD=AE,连结AO,则图中共有_________对全等三角形;
C
B
18、在中,边不动,点竖直向上运动,越来越小,越来
越大.若减少度,增加度,增加度,则三者之间的等
量关系是 .
B
A
C
D
E
19、如图,中,,的外角平分线交的延长线于点,若,则等于 度.
20、下列语句:(1)线段垂直平分线上任一点到线段两端距离相等;(2)线段上任一点到垂直平分线两端距离相等;(3)经过线段中点的直线只有一条;(4)点P在线段AB外且PA=PB ,过P作直线MN,则MN是线段AB的垂直平分线;(5)过线段上任何一点可以作这条线段的垂直平分线.其中正确的有_______________。
21、设△ABC的三边为a、b、c,化简
22、纸片△ABC中,∠A=650,∠B=750,将纸片的一角折叠,使点C落在△ABC内(如图),若∠1=200,则∠2的度数为 。
A
23、如图,按下列要求作图:
(1)作出△ABC的角平分线CD;
C
(2)作出△ABC的中线BE;
B
(3)作出△ABC的高AF和BG
24、求作一点P,使点P到已知∠AOB的两边的距离相等,且到已知点C、D的距离相等。
25
、如图,在筝形中,,,,相交于点,
(1)试说明:①;②,;
(2)如果,,求筝形的面积.
26、 如图,已知△ABC和△DEC都是等边三角形,B、C、E在同一直线上,连结BD和AE.求证:BD=AE.
A
E
B
M
C
F
27、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。
求证: (1)EC=BF; (2)EC⊥BF
28、探索题:
如图,C在直线BE上,∠ABC与∠ACE的角平分线交于点A1,
(1)若∠A=60°,求∠A1的度数;
(2)若∠A=m,求∠A1的度数;
A2
A1
E
C
B
A
(3)在(2)的条件下,若再作∠A1BE、∠A1CE的平分线,交于点A2;再作∠A2BE、∠A2CE的平分线,交于点A3;……;依次类推,则∠A2,∠A3,……,∠An分别为多少度?
29、探索题:
A
B
C
P
C
C
A
A
P
P
B
B
如图所示,在△ABC中,∠A=α, △ABC的内角平分线和外角平分线交于点P,且∠P=β,试探求下列各图中α与β的关系,并选择一个加以说明.
30、如图,在△ABC中,AD为BC边上中线.试说明AD<(AB+AC).
B D C
A
E
F
31、如图,在△ABC中,AD⊥BC,AD=BD,DE=DC,延长BE交AC于F,
(1)试说明△BDE≌△ADC的理由;
(2)你能说出BF⊥AC的理由吗?
展开阅读全文