资源描述
金属工艺学 教案
金属工艺学教案
70
金属工艺学
绪论
1. 金属工艺学的性质
是高等工科院校机械类专业必修的一门专业技术基础课。
基础课→(桥梁)→ 专业课
金属材料工艺学是一门技术基础课,对专业课和基础课起着桥梁的作用。
2.为什么要学金属工艺学?(目的)
a.获得有关金属热处理、金属材料的基本知识。
b.熟悉常见金属材料的牌号、性能特点及应用;了解它们之间成分、组织、性能、热处理的关系。
c.具有选择零件材料的能力,确定加工工艺路线的能力。
d.为后续课程和从事技术工作打下基础。
3.金属工艺学的研究对象(主要内容):常用的工程材料、材料的各种加工处理工艺。
例如:钢铁、铝合金、铜合金、塑料等材料及热处理工艺、焊接工艺、铸造工艺、切削加工工艺等加工处理工艺。
4.工程材料是国家工业发展的物质基础。
a.国家工业发展的三大支柱:材料、信息、微机。
b.工业和日常生活都离不开工程材料的使用,研究材料最终是为人类的文明进步而服务。
5.金属材料工艺学的特点:
a. 综合性强:系统介绍了从工程材料到成形加工的机械产品生产的全过程
b. 本课程同实践紧密相联系,是一门实践性很强的学科。通过生产实践才能融会贯通地学习掌握(钳工、金工实习)。
6.怎样才能学好机械工程材料工艺学?
a.注意各章节的联系、学习、复习、巩固、应用、总结。
b.要理解、要提问题、不能累计问题。
c.抓住主要内容:金属材料及热处理基本知识,铸造、锻造、焊接、切削加工基本常识。
第一章 材料的力学性能
1.材料的性能:
使用性能:物理性能、化学性能、力学性能(机械性能)。
工艺性能:热处理性能、铸造性能、焊接性能、锻造性能、切削加工性能。
2.力学性能的定义:材料在外力作用下,表现出的性能。主要有强度、塑性、硬度、韧性、疲劳极限等。
力学性能是判定材料优劣的主要指标,主要通过实验测定
第一节 强度与塑性
1.强度:
定义:是指材料抵抗塑性变形和断裂的能力。
强度大小通常用应力表示。
应力是作用力除以式样原始横截面积的商,用符号σ表示,单位为MPa。
衡量指标:屈服强度、抗拉强度。
(1) 屈服点:
定义:发生屈服现象时的应力。
公式:σs=Fs/So (MPa)
Fs-材料发生屈服现象时的力。
So-材料的原始横截面面积。
条件屈服强度规定:σr0.2=F0.2/Ao (无明显的屈服现象的材料)
应用:汽缸盖和汽缸体之间的密封性(螺栓联接)超过螺栓材料本身的屈服强度。
(2)抗拉强度:
定义:是指试样拉断过程中最大拉力所对应的最大应力值。
公式:σb=Fb/So
Fb-最大的载荷。
So-材料的原始截面面积。
应用:汽缸的密封、钢绳吊重物、机车的牵引等。
σs/σb 屈强比:越小,可靠性越高;越大,可靠性越低。
2.塑性:
定义:断裂前材料发生不可逆永久变形能力称为塑性。
衡量指标:断后伸长率、断面收缩率。
(1)断后伸长率:
定义:是指试样拉断后标距地伸长量与原标距长度的百分比,符号δ
公式:δ=(L1-L0)/L0 ×100%
L1-拉断后的长度。
L0-原来的试样长度。
注意:长、短试样测出的δ值不相等(比较大小,要同样的试样)。
L0=5d0 δ5
L0=10d0 δ10=δ
δ5>5% -塑性材料、δ5<5%-脆性材料。
45:δ5≈18.7% δ1<δ5
(2)断面收缩率:
定义:
公式:Ψ=(A0-A1)/A0×100%
S0-原截面面积。
S1-断口处断面面积。
Ψ5 Ψ10
Ψ值越大,塑性越好。
总结:δ Ψ越大,塑性越好,越易变形但不会断裂。
。
二、 硬度
硬度:
定义:抵抗更硬物体压入的能力。
衡量:布氏硬度、洛氏硬度、维氏硬度等。
1.布氏硬度:HB
试验:GB84。一定直径的钢球HBS(硬质合金HBW),规定的载荷及时间后。
HB=F/S (N/mm2) <650
举例:钢球直径:10mm,载荷:30KN(F=30D2),时间:规定10(s)。
材料:压痕直径:d0=3.92mm 查表: HBS=239
(1)应用范围:铸铁、有色金属、非金属材料。
(2)优缺点: 精确、方便、材料限制、非成品检验和薄片。
2.洛氏硬度:HR、(HRA、HRB、HRC)
试验:GB83。一定锥形的金刚石(淬火钢球),在规定载荷和时间后,测出的压痕深度差即硬度的大小(表盘表示)。
HRA、HRB、HRC。一般通常习惯用HRC(无单位)。
(1)应用范围:钢及合金钢。
(2)优缺点:测成品、薄的工件,无材料限制,但不精确。
三、 韧性
1.定义:金属在断裂前吸收变形能量的能力。
判据:冲击吸收功,断裂韧度
2冲击吸收功:规定形状和尺寸的式样在冲击试验力一次性作用折断时所吸收的功。
测定:通过夏比缺口冲击实验测定。
衡量指标:Akv=mgh1-mgh2
摆锤一次冲断式样所失去的位能称为冲击吸收功。
冲击吸收功表示了材料抵抗冲击力而不破坏的能力,是评定材料韧性好坏的重要指标。
3多冲抗力:
4.断裂韧度
低应力脆断:在材料所承受的应力远低于许用应力的情况下,突然发生无明显塑性变形的脆性断裂。
低应力脆断是由材料中的宏观裂纹的扩展引起的。
断裂韧度:是指材料抵抗裂纹扩展的能力,用Klc表示。
是度量材料韧性好坏的一个定量指标。
四、 疲劳强度
1.疲劳:材料在循环应力和变应力作用下产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程称为材料的疲劳。
2.在机械零件断裂中有80%是由于疲劳引起的
3.疲劳强度:当金属材料在无数次重复或交变载荷作用下而不致引起断裂的最大应力,叫做疲劳强度。
材料疲劳的判据:疲劳极限σD
疲劳极限值在旋转弯曲疲劳试验机上测得。
第二节 金属材料的物理、化学及工艺性能
一、物理性能:
1.比重:单位体积内物体的重量。
密度:单位体积内物体的质量。
铁:7.8克/厘米3、铜:8.9克/厘米3、铝:2.7克/厘米3、钛:4.51克/厘米3
γ<5g/cm3→轻金属、γ>5g/cm3→重金属。
应用:飞机制造业、子弹头、检验材料、炼铁、炼钢、铅球等。
2.熔点:固体→液体的温度点。
凝固点:液体→固体的温度点。
铁:1538℃、铜:1083℃、铝:660℃、钛:1660℃。
应用:耐高温材料(飞机、导弹、航天)、防火安全阀、熔断器(保险丝)等。
3.热涨性:一般而言,金属材料具有热胀冷缩的性能。
材料不同,热胀冷缩的大小也不同。
应用:电线的形态、桥梁的架设、钢轨的铺设、精密的测量工具、电冰箱、电饭锅等。
4. 导热性:金属具有传导热能的性质。
导热材料的顺序:银、铜、铝等。
金属材料的杂质越多、导热性越差。高速钢导热性差,加热要缓慢,以防开裂。
应用:陶瓷、水壶的水垢等。
5. 导电性:金属具有传递电流的性质。
导电材料的顺序:银、铜、铝等。
应用:电火花加工、电解加工、电子束加工及制造电线、电缆、玻璃拉丝模等。
6.磁性;金属材料在磁场的情况下磁化(分为软磁和硬磁)。
例如:铁、镍、钴等。
应用:手表材料、磨床的磨削加工等。
二、化学性能:
1.耐蚀性(耐酸碱性):金属材料抵抗腐蚀的性能。例如:钢铁生铁锈、铜生铜绿 (造成重大事故)。应用:食品行业、饮料行业、医药行业、化工行业等。
2.抗氧化性:高温时抵抗氧化的能力。
应用:锻打、电焊、热处理等。
3.化学稳定性:在常温下,化学稳定的性能。
应用:耐热设备、高温锅炉等。
三、工艺性能:是指是否易于进行冷、热加工的性能。
包括:热处理性能、铸造性能、焊接性能、锻造性能、切削加工性能。
第二章 铁碳合金(钢和铸铁)
第一节 纯铁的晶体结构及其同素异晶转变
一、金属的结晶
结晶:液态金属凝结成固态金属的现象。
冷却速度越大,过冷度越大。
金属的实际结晶温度总是低于理论结晶温度,Tn<To。
过冷度:To=Tn=∆T(变量)。
冷却速度越大,过冷度越大。
1.在ab段:金属均呈现液体,
2.在bc段:液体中某些原子结成晶核(自发晶核)(晶坯)晶核不断长大形成枝晶直到晶粒。
3.在cd段:每一个晶核形成一个晶粒,从而形成含有多晶体的金属固体。
概念: 晶粒、 晶界。
晶核-枝晶-晶粒-多晶体。
晶核-枝晶-晶粒
晶界;晶粒。晶粒越多,晶界也越多,则晶粒移动所受的阻力越大,宏观来看,材料越不容易发生变形,即材料的硬度越高,强度越好。
总结:晶粒越小,则材料的力学性能越好。
采用的主要途径是:
晶核数目越多-晶粒越多-晶粒越细小,从而提高材料的力学性能。
(1)提高过冷度: (>107℃/s 非晶态金属)
实验测出:冷却速度越大,生核速率越大>长大速率。
(2)变质处理(孕育处理):在液态金属中,加入一些细小的金属粉末(变
质剂)
(孕育剂)形成非自发晶核,使晶核数目增多,晶粒变细小。
(3)机械振动:使枝晶破碎成为几个晶核,使晶核数目增多(超生波振动等)。
二、纯金属的晶体结构
概念:原子球、结点、晶格、晶胞、晶格常数(a、b、c、α、β、γ)
致密度:晶胞中原子占有的体积与晶胞体积之比。
纯金属的晶格类型:
1.体心立方晶胞
例如:纯铁(α-Fe)912℃↓、W、Mo、V、Cr(β-Ti)882℃↑
立方体: a=b=c ; α=β=γ=90º
原子数:8×1/8+1=2
致密度:0.68
原子的晶格结构不同,则性能不同,即使原子的晶格结构相同,但由于原子的质量不同,性能也不同。
2.面心立方晶格
立方体 a=b=c α=β=γ=90º
原子数:8×1/8+6×1/2=4
致密度:0.74
举例:铜:a=b=c=3.608×108、铜原子M=63.54×1.67×10-24g
铜原子的直径:D=2.5505Å,计算铜的密度?
纯铁(γ-Fe)912~1394℃、Al、Cu、Ag、Mn等。
三、纯铁的同素异晶转变(举列钻石和石墨)
纯铁:α-Fe→(912℃)γ-Fe(1394℃)→δ-Fe(1538℃)→L
二次结晶或重结晶。
提问:一定质量的纯铁加热到912~1394℃时,体积是增加还是减少,若继续加热到1394~1538℃时,体积是增大还是减少?
第二节 铁碳合金的基本组织
合金:金属元素同另一种或几种金属元素或非金属元素组成的具有金属特性的新材料。
金属特性:导电性、导热性、塑性、光泽。
例如:钢铁合金:Fe+C+Mn+Si、铝合金:(Al+Mg+Mn)、(Al+Ze+Mn)、
铜合金:(Cu+Zn)、(Cu+Sn)、(Cu+Ni)等。
产生具有优良的使用性能和工艺性能方面的新材料(特出的物理、化学性能)。
组元:
定义:合金中的最小单元。
合金系:
合金中百分含量不同的组元构成的一系列合金。铝合金(Al+Mg+Mn)。
铝合金:Al:99%、97%、95%、……..
Mg:0.5%、2%、2%、……….
Mn:0.5%、1%、3%、……….
二元合金系、三元合金系、四元合金系。
相:
具有同一化学成分,同一聚集状态,且有明显界面分开的独立均匀部分。
例如:液→单相、固相→单相、液+固→两相。
一、固溶体:溶质原子进入溶剂中,依然保持晶格类型的金属晶体。
置换固溶体:d质/d剂>0.85。(胖子到教室形象举例)
晶格歪扭、畸变,晶体缺陷。
无限置换固溶体:Cu+Ni
有限置换固溶体:Cu+Zn
温度越高,则溶解度(固溶量)越大。
间隙固溶体:d质/d剂<0.59。(瘦子到教室形象举例)
晶格歪扭、畸变,晶体缺陷。
只能形成有限固溶体:C→α-Fe、 727℃ 0.0218%。
因形成固溶体使材料强度、硬度升高的现象-固溶强化。(合金的好处)
1.铁素体F:C→α-Fe中形成的固溶体。
单相、层片状、体心立方晶格。
20℃ 0.0008%C (工业纯铁)。
727℃ 0.0218%C 。
机械性能:δ=30~50%、ψ=70~80%、αku=160~200J/cm2、σb=180~280MPa、HBS50~80 (770℃↓磁性)。(应用简略提一下)
(饱和的盐水凝固点-21℃、其沸点108℃。 饱和NaOH溶液沸点314℃。)
2.奥氏体A:C→γ-Fe中形成的固溶体。
单相、层片状、面心立方晶格。
727℃ 0.77%C、1148℃ 2.11%C。
机械性能:δ=40~60%、σb=400~50MPa、HBS=170~220、抗磁性。
(应用提一下)
二、金属化合物(中间相)(强化相)
形成:温度降低时析出的一种新材料。
Fe3C、Fe2.4C、VC、WC、CuZn、Cu21Zn22
σ↑、HRC↓、δ↓、ψ↓、αku↓。
渗碳体C:F+C层片相间叠加。硬度极高,而塑性、韧性极低。
三、机械混合物:
定义:α-固溶体+β-固溶体+…+α-金属化合物+β-金属化合物
例如:钢铁、铝合金、铜合金、钛合金等。
1. 珠光体P:F+Fe3C
两相,机械混合物。 0.77%C。
机械性能:δ=20~25%、σb=800~850MPa、 HBS=280~260。
强度高、硬度较高。(应用提一下)
2.莱氏体Ld、Ld′: 两相机械混合物,含碳量:4.3%C。
Ld=A+C 727~1148℃。(高温莱氏体)
Ld′=P+C 20~727℃。(低温莱氏体)
机械性能:HB=560~600、δ=4~5%。性能与渗碳体相近。(应用较少)
第三节 铁碳合金状态图
T
A
L
D
A
E L+A C L+C F
G
A+C A+C Ld+A+C Ld Ld+C
727F P S K
600Q
P+F P P+C P+C Ld′+P+C Ld′ Ld′+C
0 0.77 2.11 4.30 6.69
F+C
一、铁碳合金状态图的建立
(1)配制不同成分的铁碳合金,用热分析法测定各合金的冷却曲线。
(2)从各冷却曲线上找出临界点,并将各临界点分别画到成分-温度坐标中。
(3)将意义相同的临界点连接起来。
二、Fe-Fe3C合金状态图的分析:
1.点(特性点):
A 1538℃ 100%Fe的熔点 ; D 1227℃ 100%Fe3C的熔点;
G 912℃ 100%Fe的同素异晶转变点(重结晶温度点);
C 1148℃ 4.3%C 共晶点L→Ld(A+C) 共晶反应;
F 1148℃ 6.69%C 虚点 ; P 727℃ 100%Fe虚点;
K 727℃ 6.69%C虚点、E 1148℃ 2.11%C 碳在γ-Fe中的最大固溶量;
S 727℃ 0.77%C 碳在γ-Fe中的最小固溶量,共析点A→P 共析反应。
2.线(特性线):
(1)AC线:液相线 开始结晶出奥氏体:L→L+A。DC线:液相线 开始结晶出渗碳体:L→L+C。
(2)AE线:固相线 奥氏体结晶终了线:L+A→A。ECF线:固相线(共晶线):共晶反应 L→Ld。
(3)GS线-A3线:从奥氏体中开始析出铁素体线。
(4)ES线—Acm线:从奥氏体中开始析出渗碳体线(碳在奥氏体中的固溶线)。
(5)PSK线-A1线:共析线; 共析反应 A→P(F+C)共晶体。
(6)PQ线-碳在铁素体中的溶解度曲线。这种由铁素体中析出的渗碳体为三次渗碳体。
3.分类:
含含碳量分类:
工业纯铁:C≤0.0218%C
钢:0.0218%<C≤2.11%
白口铁:2.11%<C<6.69%
钢分类:
共析钢:0.77% P
亚共析钢: C<0.77% P+F
过共析钢: C>0.77% P+C
共晶白口铁分类:
共晶白口铁:4.3%C Ld′
亚共晶白口铁:C<4.3%C Ld′+P+C
过共晶白口铁:C>4.3%C Ld′+C
三、钢在结晶过程中的组织转变
实验:热分析法-(C:0-6.69%)实用价值。
1.共析钢:
0.77%C:L→L+A→A→P
分析:在727℃发生共析反应,A中含碳多少?P中含碳多少?
(727℃:F=88.78%、C=11.22%)
2.亚共析钢:
0.5%C:L→L+A→A→A+F→P+F
分析:①A→A+F 在→点以上A中含碳多少?随着温度降低,A中含碳是 逐渐增加还是减少?
②A+F→P+F 在冷却到→点时,A中含碳增加到0.77%C,发生共析反应 A→P,727℃时,P、F各占百分多少?
727℃: F=35.34%、P=64.66%。20℃:F=92.64%、C=7.36%。
3.过共析钢:
1.0%C:L→L+A→A→A+C→P+C (P=96.1%、C=3.9%)
分析:①A→A+C 在→点以上,A中含碳多少?C中含碳多少?在→点以下,随着温度降低,A中含碳逐渐增加还是减少?
②A+C→P+C 当冷却到→时,A中含碳逐渐减少到0.77%C,发生共析反应
A→P,727℃,P、C相对含量是多少?
Ⅵ.亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁请学生自行分析。
铁碳合金的组织和性能:
工业纯铁:F 塑性好。
亚共析钢:F+P 取决于F、P的含量。
共析钢:P 强度高。
过共析钢:P+C 取决于P、C的含量(C为网状的二次渗碳体,脆、不合格)。
亚共晶白口铸铁、共晶白口铸铁、过共晶白口铸铁自行分析。
力学性能和含碳量的关系曲线图。
力学性能
Ψδαku
HB
σS σb含碳量(钢≤1.4%C) 0 0.77 1.40 2.11 4.3
4.Fe-Fe3C状态图的应用。
正确选材:
①.C≤0.25%,低碳钢:塑性好,韧性好。
②0.25%<C<0.60%,中碳钢:综合机械性能好。
③.0.60%≤C≤1.4%,高碳钢:硬度高,耐磨性好。
制定工艺性能:
①铸造方面:
共晶成分的铁碳合金铸造时,组织致密,不易偏析。
②锻造方面:
钢加热到固相线AE以下200℃及A3线上170℃之间,利用奥氏体塑性好。
③焊接方面:
④热处理方面:
第四节 工业用钢简介
复习旧课:碳对铁碳合金组织和性能的影响。
一、钢的分类
碳钢的分类、编号和用途:
分类:
①低碳钢:<0.25%C ①亚共析钢: 0.008~0.77%C。
②中碳钢:0.25%≤C<0.60% ②共析钢: 0.77%C。
③高碳钢:0.60%<C≤1.4% ③过共析钢:0.77~2.11%C。
质量:
①普通碳素钢:S≤0.05%、P≤0.045%。
②优质碳素钢:S≤0.04%、P≤0.04%。(和国际不接轨)
③高级优质碳素钢:S≤0.03%、P≤0.035%。
用途:
①碳素结构钢:
②碳素工具钢:
冶炼:
①平炉钢(逐渐淘汰) ②转炉钢(使用) ③电弧炉钢。
酸碱性:
①酸性钢 ②碱性钢 ③中性钢。
钢的分类:碳素钢和合金钢。
二、碳素钢:
钢中杂质含量对其性能的影响
1.锰Mn:0.25~0.8%Mn,有益元素,脱氧剂。提高钢的强度和硬度,特别是降低钢的的脆性。
2.硅Si:<0.4%Si,有益元素,脱氧剂。提高钢的强度。
3.硫S:<0.050%,有害元素,热脆(红脆性)。(FeS+Fe)为共晶体,985℃为液体。
硫的含量越高,热脆性越严重。
4.磷P:<0.0045%,有害元素,冷脆。使钢常温下其塑性和韧性急剧下降,脆性转变温度升高,在低温时,这种现象更加严重。
5.氢H:<0.0001%,有害元素,氢脆,白点。过多的氢分子会导致钢的开裂。
总之,杂质元素对钢材的性能与质量影响很大,必须严格控制在所规定的范围内。
碳素钢分如下三类:
(1)普通碳素结构钢:
新:Q235A(F、b、Z)、σs≥235MPa。
旧:甲类钢:A1、A2、A3、………A7满足机械性能要求的。
乙类钢:B1、B2、B3、……….B7满足化学性能要求的。
特类钢:C2、C3、……..C5满足机械和化学性能要求的。
通常用于制造型材、螺钉、铁钉、铁丝、建筑材料等。
(2)优质碳素结构钢:
普通含锰量钢:0.25~0.8%Mn。
较高含锰量钢:0.70~1.20%Mn。
举例:45: 0.45%C左右、 0.50~0.80%Mn左右。
45Mn : 0.45%C左右、 0.70~1.00%Mn左右。
常用于齿轮、主轴、连杆→45。
弹簧、板簧、发条→65、65Mn。
(3).碳素工具钢:
优质碳素工具钢:T+数字。
高级优质碳素工具钢:T+数字+A。
举例:T7、T8、T9、……….T14。含义:0.7%、0.80%、0.9%…….1.4%
T7A、T8A、T9A、……….T14A。主要用于剪刀、斧头、锯子、锉刀等。
三、合金钢:
钢:非合金钢、低合金钢、合金钢。
合金钢:低合金钢、合金钢。
碳钢在200℃时,机械性能剧烈下降,而合金钢在650℃时,其机械性能才略为下降。
质量:优质钢、高级优质钢(A)、特级优质钢(E)。
1.合金结构钢
起首两位数字表示平均含碳量的万分之几,其后的符号表示所含的主要元素;若元素含量<1.5%,不标数,元素含量≥1.5%,其后的数表示其百分含量。最后标“A”则称为高级优质合金结构钢(滚动轴承钢除外)。
例:12CrNi3:0.12%C、Cr<1.5%、3%Ni
20CrMnTi:0.20%C、Cr、Mn、Ti<1.5%
15Cr、20Mn2B、55Si2MnA
2.合金工具钢
当含碳量≥1.0%时,不标含碳量数当含碳量<1.0%时,起首数表示含碳量的千分之几。合金元素同上。
例:9Mn2V:0.9%C、2%Mn、V<1.5%
CrWMn:C≥1.0%、Cr、W、Mn<1.5%。
W18Cr4V、W12Cr4V4Mo、9SiCr。
3.特殊性能钢
起首数表示含碳量的千分之几,若起首为“0”,则表示含碳量<0.10%;若起首数为“00”,则表示含碳量为≤0.03%,合金元素同上。
例:9Cr18: 0.9%C、18%Cr。
1Cr18Ni9Ti:0.1%C、18%Cr、9%Ni、Ti<1.5%。
0Cr17Mn13Mo2V:C<0.1%、17%Cr、13%Mn、2%Mo、N<1.5%
0Cr18Ni9Ti、1Cr13、1Cr28、0Cr17Ti。
第五节 零件选材的一般原则
选择材料的一般原则如下:
1.应能满足零件的工作要求:安全第一。
2.应能满足工艺性能要求:质量第一。
3.必须重视材料的经济性:效率第一。(以铁代钢,以铸代锻)
问答题:
一、根据铁碳合金状态图,说明下列原因:
1.含碳1.0%的钢比含碳0.5%的钢硬度高。
2.含碳1.2%的钢比含碳0.6%的钢强度高。
3.钢宜压力加工成形,铸铁宜铸造成形。
4.钳工锯T8、T10钢比锯10、20钢费力,锯条宜钝。
5.在1100℃含碳0.4%的钢能锻造,而含碳4.0%的生铁不能锻造。
6.捆扎物品的铁丝一般都用低碳钢,而吊车用的钢缆却用中碳钢。
7.制造滚动轴承的材料均是高碳钢。
8.制造刮刀、刻字刀具均用高碳钢。
9.制造型材的钢均用08、10号钢。
二、选择对应的材料:
45 65 A3(Q235A) T13 T8A 10 ZG280-500。
弹簧 主轴 螺钉 锯子 锉子 箱体 油箱盖。
布置作业:
课后总结:
授课时间: 班级:
本课课题:钢的热处理
教学目的和要求:1.掌握退火的目的、种类、方法及应用。
2.掌握正火的目的、方法及应用。
重点与难点:正火和退火的应用。
教学方法:讲授法和录像观摩。
课型:理论课
教学过程
第一节 概述
复习旧课:碳素钢的分类和牌号及其应用。
第四章 钢的热处理
现代工业生产中,为了不断提高金属下材料的机械性能,采用两种方法:
①合金化法-碳钢中加入合金元素(调整钢的化学成分)。
②热处理法-碳钢进行工艺处理(调整钢的组织)。
热处理:钢在固态范围内,通过加热、保温、冷却,改变金属材料的内部组织,改变材料的力学性能。
一个条件,三个过程:Sold hot-keep-cold。
分类:
普通热处理:退火、正火、淬火、回火。
热处理 表面淬火:火焰加热和感应加热法。
表面热处理
化学热处理:渗碳、渗氮、二元、多元共渗。
٭【第一节:热处理的基本原理】(教课书省略)
一、钢的加热和保温时的组织转变:
绝大多数的热处理均是把钢加热到使其转变为奥氏体组织且尽量保持细小的晶粒。
1.钢在加热(冷却)时组织转变的温度。
AC1-加热时,珠光体转变为奥氏体的温度。
Ar1-冷却时,奥氏体转变为珠光体的温度。
AC3-加热时,铁素体转变为奥氏体。
Ar3-冷却时,奥氏体转变为铁素体的开始温度。
ACCm-加热时,二次渗碳体在奥氏体中的溶解的终了温度。
ArCm-冷却时,二次渗碳体从奥氏体中析出的终了温度。
钢号: 10 25 30 50 T10 T12
AC1: 727 735 732 727 730 730
AC3: 876 840 813 774
Ar3: 850 824 796 755
Ar1: 710 710 714 718 718 713
ACCm: 800 820
加热、冷却时的理想温度:A1、A3、ACm
实际加热温度: AC1、AC3、ACCm (0~+20℃)
实际冷却温度: Ar1、Ar3、ArCm (0~-20℃)
2.钢加热时的变化:
以共析钢为例:
①加热到AC1以下时,依然是P;
②加热到AC1时,A晶核产生;
③继续加热,A晶核长大,F→A、C溶解;
④残余C溶解;
⑤均匀化。
亚共析钢、过共析钢分析:
共析钢等温曲线图
℃(温度)
A1
600
550
500
230 Ms
-50 Mf
0 0.1 1 10 102 103 104 105 106 S(时间)
根据组织分成三个转变区:
1.高温转变区(珠光体转变区):A1~550℃, P。
A1~650℃, A′→P粗、HRC15~22、δ=20%、σb=550MPa。
650~600℃, A′→P细(索氏体S)、HRC22~27、δ=18%、σb=870MPa。
600~550℃, A′→P极细(托氏体T)、HRC27~43、δ=18%、σb=1100MPa。
2.高温转变区(贝氏体转变区):550~Ms,A→A′→B=C粒+F。
550~350℃, A′→B上(羽毛状)=C粒+F条状,HRC40~45。
350~Ms,A′→B下(竹叶状)=C粒+F针,HRC45~55。
3.低温转变区(马氏体转变区):Ms~Mf ,A→A′→M+A′残。
M:C→α-Fe(过饱和地溶解),HRC65~66,硬度很高。
特点:①Ms~Mf范围 ;
②内应力很大;
③A′不能100%转变为M。
三、钢的冷却曲线应用:
等温冷却:定性
连续冷却:定量
炉冷:10℃/min、空冷:10℃/s、油冷:150℃/s、水冷:600℃/s。
P S+P S+T+M M+A′残
临界冷却速度Vk=V临。】
补充内容:
影响C曲线的因素:
①含碳量:C<0.77% C%↑C曲线右移。C>0.77% C%↑C曲线左移。
②合金元素:除Co外所有的合金元素均使C曲线右移。
③加热温度:温度越高,C曲线右移。
保温时间:时间越长,C曲线右移。
亚共析钢的C曲线 过共析钢的C曲线
℃ ℃
Ar3 Arcm
550 550
320 Ms 175 Ms
50 Mf -80 Mf
0 1 10 100 S 0 1 10 100 S
第二节 退火和正火
方法:
普通热处理:退火、正火、淬火、回火。
热处理 表面淬火:火焰加热和感应加热法。
表面热处理 化学热处理:渗碳、渗氮、二元、多元共渗。
一、退火:
把钢加热到一定温度,保温一定时间,然后缓慢冷却(炉冷)的热处理工艺法。
目的:①提高钢的塑性和韧性(利于切削加工);
②消除钢的内应力(以防钢件变形和开裂);
③均匀组织;
④为随后的热处理做准备(组织上为以后的热处理做准备)。
退火的种类:
(1)完全退火:(亚共析钢)
把钢加热到AC3线以上30~50℃的温度,保温一定时间(1.5~2.5min/mm30min/m3)(碳钢按有效厚度或直径每25毫米为1小时,合金钢按有效厚度或直径每20毫米为 1小时,保温时间与工件形状、材料质量、装炉量等有关)然后随炉冷却的一种工艺。
组织分析:P+F→A→A′→P+F (重结晶退火)。(实际生产中在炉中冷却到500℃左右即可出炉冷却)
(2)球化退火:(过共析钢)
把钢加热到AC1线以上20~30℃的温度,保温一定时间(5~6min/mm1hour/m3)然后随炉冷却的一种工艺。
组织分析:P+Fe3C网→A+Fe3C网→A′+Fe3C球→P+Fe3C球。
(实际生产中冷却到500℃以下时,组织转变完成,可取出空冷)。有些难于形成颗粒球状渗碳体的钢,可以多次并重复上述过程-循环退火(周期化退火)。
(3)低温退火:(亚、共、过共析钢)
把钢加热到500~650℃,保温一定时间(6~8min/mm、1.5hour/m3),然后随炉冷却的一种工艺。(低温退火)若用于消除加工硬化(650~750℃),空冷,则称为再结晶退火。
组织分析:P+F→P+F→P+F→P+F
P→学生分析。
P+Fe3C网→学生分析。
(4)扩散退火:(亚、过共析钢)
把钢加热到AC3线以上150~200℃、ACCm线以上150~200℃,保温一定时间(10~20hour)然后随炉冷却的一种工艺。(加热温度高,保温时间长,成本高,钢的烧损量大,晶粒粗大),这种工艺是为了消除钢中的成分不均匀的现象。
二、正火:
把钢加热到AC3线或ACCm线以上30~50℃的温度,经过保温后,随空气冷却的一种工艺。
目的:①提高低碳钢的硬度。(利于切削加工)
②消除网状渗碳体组织。(冷却速度较大,网状来不及形成)
③改善钢的组织。(细化晶粒,均匀组织)
因正火是在空气中冷却,得到的组织晶粒细小,且缩短了冷却时间,
提高了生产率和设备利用率,是一种
展开阅读全文