收藏 分销(赏)

算法设计与分析基础习题解答.doc

上传人:pc****0 文档编号:7778209 上传时间:2025-01-16 格式:DOC 页数:41 大小:1.06MB 下载积分:10 金币
下载 相关 举报
算法设计与分析基础习题解答.doc_第1页
第1页 / 共41页
算法设计与分析基础习题解答.doc_第2页
第2页 / 共41页


点击查看更多>>
资源描述
习题1.1 5..证明等式gcd(m,n)=gcd(n,m mod n)对每一对正整数m,n都成立. Hint: 根据除法的定义不难证明: l 如果d整除u和v, 那么d一定能整除u±v; l 如果d整除u,那么d也能够整除u的任何整数倍ku. 对于任意一对正整数m,n,若d能整除m和n,那么d一定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也一定能整除m=r+qn和n。 数对(m,n)和(n,r)具有相同的公约数的有限非空集,其中也包括了最大公约数。故gcd(m,n)=gcd(n,r) 6.对于第一个数小于第二个数的一对数字,欧几里得算法将会如何处理?该算法在处理这种输入的过程中,上述情况最多会发生几次? Hint: 对于任何形如0<=m<n的一对数字,Euclid算法在第一次叠代时交换m和n, 即 gcd(m,n)=gcd(n,m) 并且这种交换处理只发生一次. 7.a.对于所有1≤m,n≤10的输入, Euclid算法最少要做几次除法?(1次) b. 对于所有1≤m,n≤10的输入, Euclid算法最多要做几次除法?(5次) gcd(5,8) 习题1.2 1.(农夫过河) P—农夫 W—狼 G—山羊 C—白菜 2.(过桥问题) 1,2,5,10---分别代表4个人, f—手电筒 4. 对于任意实系数a,b,c, 某个算法能求方程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平方根的函数) 算法Quadratic(a,b,c) //求方程ax^2+bx+c=0的实根的算法 //输入:实系数a,b,c //输出:实根或者无解信息 If a≠0 D←b*b-4*a*c If D>0 temp←2*a x1←(-b+sqrt(D))/temp x2←(-b-sqrt(D))/temp return x1,x2 else if D=0 return –b/(2*a) else return “no real roots” else //a=0 if b≠0 return –c/b else //a=b=0 if c=0 return “no real numbers” else return “no real roots” 5. 描述将十进制整数表达为二进制整数的标准算法 a.用文字描述 b.用伪代码描述 解答: a.将十进制整数转换为二进制整数的算法 输入:一个正整数n 输出:正整数n相应的二进制数 第一步:用n除以2,余数赋给Ki(i=0,1,2...),商赋给n 第二步:如果n=0,则到第三步,否则重复第一步 第三步:将Ki按照i从高到低的顺序输出 b.伪代码 算法 DectoBin(n) //将十进制整数n转换为二进制整数的算法 //输入:正整数n //输出:该正整数相应的二进制数,该数存放于数组Bin[1...n]中 i=1 while n!=0 do { Bin[i]=n%2; n=(int)n/2; i++; } while i!=0 do{ print Bin[i]; i--; } 9.考虑下面这个算法,它求的是数组中大小相差最小的两个元素的差.(算法略) 对这个算法做尽可能多的改进. 算法 MinDistance(A[0..n-1]) //输入:数组A[0..n-1] //输出:the smallest distance d between two of its elements 习题1.3 1. 考虑这样一个排序算法,该算法对于待排序的数组中的每一个元素,计算比它小的元素个数,然后利用这个信息,将各个元素放到有序数组的相应位置上去. a.应用该算法对列表”60,35,81,98,14,47”排序 b.该算法稳定吗? c.该算法在位吗? 解: a. 该算法对列表”60,35,81,98,14,47”排序的过程如下所示: b.该算法不稳定.比如对列表”2,2*”排序 c.该算法不在位.额外空间for S and Count[] 4.(古老的七桥问题) 习题1.4 1.请分别描述一下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i个元素(1<=i<=n) b.删除有序数组的第i个元素(依然有序) hints: a. Replace the ith element with the last element and decrease the array size of 1 b. Replace the ith element with a special symbol that cannot be a value of the array’s element(e.g., 0 for an array of positive numbers ) to mark the ith position is empty. (“lazy deletion”) 第2章 习题2.1 7.对下列断言进行证明:(如果是错误的,请举例) a. 如果t(n)∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解: a. 这个断言是正确的。它指出如果t(n)的增长率小于或等于g(n)的增长率,那么 g(n)的增长率大于或等于t(n)的增长率 由 t(n)≤c·g(n) for all n≥n0, where c>0 则: for all n≥n0 b. 这个断言是正确的。只需证明。 设f(n)∈Θ(αg(n)),则有: for all n>=n0, c>0 for all n>=n0, c1=cα>0 即:f(n)∈Θ(g(n)) 又设f(n)∈Θ(g(n)),则有: for all n>=n0,c>0 for all n>=n0,c1=c/α>0 即:f(n)∈Θ(αg(n)) 8.证明本节定理对于下列符号也成立: a.Ω符号 b.Θ符号 证明: a。we need to proof that if t1(n)∈Ω(g1(n)) and t2(n)∈Ω(g2(n)), then t1(n)+ t2(n)∈Ω(max{g1(n), g2(n)})。 由 t1(n)∈Ω(g1(n)), t1(n)≥c1g1(n) for all n>=n1, where c1>0 由 t2(n)∈Ω(g2(n)), T2(n)≥c2g2(n) for all n>=n2, where c2>0 那么,取c>=min{c1,c2},当n>=max{n1,n2}时: t1(n)+ t2(n)≥c1g1(n)+ c2g2(n) ≥c g1(n)+c g2(n)≥c[g1(n)+ g2(n)] ≥cmax{ g1(n), g2(n)} 所以以命题成立。 b. t1(n)+t2(n) ∈Θ( 证明:由大Ⓗ的定义知,必须确定常数c1、c2和n0,使得对于所有n>=n0,有: 由t1(n)∈Θ(g1(n))知,存在非负整数a1,a2和n1使: a1*g1(n)<=t1(n)<=a2*g1(n)-----(1) 由t2(n)∈Θ(g2(n))知,存在非负整数b1,b2和n2使: b1*g2(n)<=t2(n)<=b2*g2(n)-----(2) (1)+(2): a1*g1(n)+ b1*g2(n)<=t1(n)+t2(n) <= a2*g1(n)+ b2*g2(n) 令c1=min(a1,b1),c2=max(a2,b2),则 C1*(g1+g2)<= t1(n)+t2(n) <=c2(g1+g2)-----(3) 不失一般性假设max(g1(n),g2(n))=g1(n). 显然,g1(n)+g2(n)<2g1(n),即g1+g2<2max(g1,g2) 又g2(n)>0,g1(n)+g2(n)>g1(n),即g1+g2>max(g1,g2)。 则(3)式转换为: C1*max(g1,g2) <= t1(n)+t2(n) <=c2*2max(g1,g2) 所以当c1=min(a1,b1),c2=2c2=2max(c1,c2),n0=max(n1,n2)时,当n>=n0时上述不等式成立。 证毕。 习题2.4 1. 解下列递推关系 (做a,b) 当n>1时 a. 解: 当n>1时 b. 解: 2. 对于计算n!的递归算法F(n),建立其递归调用次数的递推关系并求解。 解: 3. 考虑下列递归算法,该算法用来计算前n个立方的和:S(n)=13+23+…+n3。 算法S(n) //输入:正整数n //输出:前n个立方的和 if n=1 return 1 else return S(n-1)+n*n*n a. 建立该算法的基本操作次数的递推关系并求解 b. 如果将这个算法和直截了当的非递归算法比,你做何评价? 解: a. 7. a. 请基于公式2n=2n-1+2n-1,设计一个递归算法。当n是任意非负整数的时候,该算法能够计算2n的值。 b. 建立该算法所做的加法运算次数的递推关系并求解 c. 为该算法构造一棵递归调用树,然后计算它所做的递归调用次数。 d. 对于该问题的求解来说,这是一个好的算法吗? 解: a.算法power(n) //基于公式2n=2n-1+2n-1,计算2n //输入:非负整数n //输出: 2n的值 If n=0 return 1 Else return power(n-1)+ power(n-1) c. 8.考虑下面的算法 算法 Min1(A[0..n-1]) //输入:包含n个实数的数组A[0..n-1] If n=1 return A[0] Else temp←Min1(A[0..n-2]) If temp≤A[n-1] return temp Else return A[n-1] a.该算法计算的是什么? b.建立该算法所做的基本操作次数的递推关系并求解 解: a.计算的给定数组的最小值 for all n>1 n=1 b. 9.考虑用于解决第8题问题的另一个算法,该算法递归地将数组分成两半.我们将它称为Min2(A[0..n-1]) 算法 Min(A[r..l]) If l=r return A[l] Else temp1←Min2(A[l..(l+r)/2]) Temp2←Min2(A[l..(l+r)/2]+1..r) If temp1≤temp2 return temp1 Else return temp2 a.建立该算法所做的的操作次数的递推关系并求解 b.算法Min1和Min2哪个更快?有其他更好的算法吗? 解: a. 习题2.6 1. 考虑下面的排序算法,其中插入了一个计数器来对关键比较次数进行计数. 算法SortAnalysis(A[0..n-1]) //input:包含n个可排序元素的一个数组A[0..n-1] //output:所做的关键比较的总次数 count←0 for i←1 to n-1 do v←A[i] j←i-1 while j>0 and A[j]>v do count←count+1 A[j+1]←A[j] j←j+1 A[j+1]←v return count 比较计数器是否插在了正确的位置?如果不对,请改正. 解:应改为: 算法SortAnalysis(A[0..n-1]) //input:包含n个可排序元素的一个数组A[0..n-1] //output:所做的关键比较的总次数 count←0 for i←1 to n-1 do v←A[i] j←i-1 while j>0 and A[j]>v do count←count+1 A[j+1]←A[j] j←j+1 if j>=0 count=count+1 A[j+1]←v return count 习题3.1 4. a.设计一个蛮力算法,对于给定的x0,计算下面多项式的值: P(x)=anxn+an-1xn-1+…+a1x+a0 并确定该算法的最差效率类型. b.如果你设计的算法属于Θ(n2),请你为该算法设计一个线性的算法. C.对于该问题来说,能不能设计一个比线性效率还要好的算法呢? 解: a. Algorithms BruteForcePolynomialEvaluation(P[0..n],x) //由高幂到低幂用蛮力法计算多项式p在给定点x的值 //输入:P[0..n]是多项式按低幂到高幂的常系数,以及定值x //输出: 多项式p在给定点x的值 p=0.0 for i=n to 0 do power=1 for j=1 to i do power=power*x p=p+P[i]*power return p 算法效率分析: 基本操作:两个数相乘,且M(n)仅依赖于多项式的阶n b. tha above algorithms is very inefficient, because we recompute powers of x again and again as if there were no relationship among them.In fact ,we can move from the lowest term to the highest and compute xi by using xi-1. Algorithms BetterBruteForcePolynomialEvaluation(P[0..n],x) //由高幂到低幂用蛮力法计算多项式p在给定点x的值 //输入:P[0..n]是多项式按低幂到高幂的常系数,以及定值x //输出: 多项式p在给定点x的值 P=P[0] power=1 for i←1 to n do power←power*x p←p+P[i]*power return p 基本操作乘法运算总次数M(n): c.不行.因为计算任意一个多项式在任意点x的值,都必须处理它的n+1 个系数.例如: (x=1,p(x)=an+an-1+..+a1+a0,至少要做n次加法运算) 5.应用选择排序对序列example按照字母顺序排序. 6.选择排序是稳定的吗?(不稳定) 7.用链表实现选择排序的话,能不能获得和数组版相同的Θ(n2)效率? Yes.Both operation—finding the smallest element and swapping it –can be done as efficiently with the linked list as with an array. 9.a.请证明,如果对列表比较一遍之后没有交换元素的位置,那么这个表已经排好序了,算法可以停止了. b.结合所做的改进,为冒泡排序写一段伪代码. c.请证明改进的算法最差效率也是平方级的. Hints: a. 第i趟冒泡可以表示为: 如果没有发生交换位置,那么: b.Algorithms BetterBubblesort(A[0..n-1]) //用改进的冒泡算法对数组A[0..n-1]排序 //输入:数组A[0..n-1] //输出:升序排列的数组A[0..n-1] count←n-1 //进行比较的相邻元素对的数目 flag←true //交换标志 while flag do flag←false for i=0 to count-1 do if A[i+1]<A[i] swap(A[i],A[i+1]) flag←true count←count-1 c最差情况是数组是严格递减的,那么此时改进的冒泡排序会蜕化为原来的冒泡排序. 10.冒泡排序是稳定的吗?(稳定) 习题3.2 1. 对限位器版的顺序查找算法的比较次数: a. 在最差情况下 b. 在平均情况下.假设成功查找的概率是p(0<=p<=1) Hints: a. Cworst(n)=n+1 b. 在成功查找下,对于任意的I,第一次匹配发生在第i个位置的可能性是p/n,比较次数是i.在查找不成功时,比较次数是n+1,可能性是1-p. 6.给出一个长度为n的文本和长度为m的模式构成的实例,它是蛮力字符串匹配算法的一个最差输入.并指出,对于这样的输入需要做多少次字符比较运算. Hints: 文本:由n个0组成的文本 模式:前m-1个是0,最后一个字符是1 比较次数: m(n-m+1) 7.为蛮力字符匹配算法写一个伪代码,对于给定的模式,它能够返回给定的文本中所有匹配子串的数量. Algorithms BFStringmatch(T[0..n-1],P[0..m-1]) //蛮力字符匹配 //输入:数组T[0..n-1]—长度为n的文本,数组P[0..m-1]—长度为m的模式 //输出:在文本中匹配成功的子串数量 count←0 for i←0 to n-m do j←0 while j<m and P[j]=T[i+j] j←j+1 if j=m count←count+1 return count 8.如果所要搜索的模式包含一些英语中较少见的字符,我们应该如何修改该蛮力算法来利用这个信息. Hint:每次都从这些少见字符开始比较,如果匹配, 则向左边和右边进行其它字符的比较.习题4.1 1.a.为一个分治算法编写伪代码,该算法求一个n个元素数组中最大元素的位置. b.如果数组中的若干个元素都具有最大值,该算法的输出是怎样的呢? c.建立该算法的键值比较次数的递推关系式并求解. d.请拿该算法与解同样问题的蛮力算法做一个比较 解:a. Algorithms MaxIndex(A[l..r]){ Input:A portion of array A[0..n-1] between indices l and r(l≤r) Output: The index of the largest element in A[l..r] if l=r return l else temp1←MaxIndex(A[l..(l+r)/2]) temp2←MaxIndex(A[(l+r)/2..r]) if A[temp1]≥A[temp2] return temp1 else return temp2 } b.返回数组中位于最左边的最大元素的序号. c.键值比较次数的递推关系式: C(n)=C( n/2 )+C( n/2 )+1 for n>1 C(1)=0 设n=2k,C(2k)=2C(2k-1)+1 =2[2 C(2k-2)+1]+1=22C(2k-2)+2+1 =2[22C(2k-3)+1]+2+1=23C(2k-3)+ 22+2+1 =... =2iC(2k-i)+ 2i-1+2 i-2 +...+2+1 =... =2kC(2k-k)+ 2k-1+2 k-2 +...+2+1=2k-1=n-1 可以证明C(n)=n-1对所有n>1的情况都成立(n是偶数或奇数) d.比较的次数相同,但蛮力算法不用递归调用。 2、a.为一个分治算法编写伪代码,该算法同时求出一个n元数组的最大元素和最小元素的值。 b.请拿该算法与解同样问题的蛮力算法做一个比较。 c.请拿该算法与解同样问题的蛮力算法做一个比较。 解答: a.同时求出最大值和最小值,只需要将原数组一分为二,再使用相同的方法找出这两个部分中的最大值和最小值,然后经过比较就可以得到整个问题的最大值和最小值。 算法 MaxMin(A[l..r],Max,Min) //该算法利用分治技术得到数组A中的最大值和最小值 //输入:数值数组A[l..r] //输出:最大值Max和最小值Min if(r=l) Max←A[l];Min←A[l]; //只有一个元素时 else if r-l=1 //有两个元素时 if A[l]≤A[r] Max←A[r]; Min←A[l] else Max←A[l]; Min←A[r] else //r-l>1 MaxMin(A[l,(l+r)/2],Max1,Min1); //递归解决前一部分 MaxMin(A[(l+r/)2..r],Max2,Min2); //递归解决后一部分 if Max1<Max2 Max= Max2 //从两部分的两个最大值中选择大值 if Min2<Min1 Min=Min2; //从两部分的两个最小值中选择小值 } b.假设n=2k,比较次数的递推关系式: C(n)=2C(n/2)+2 for n>2 C(1)=0, C(2)=1 C(n)=C(2k)=2C(2k-1)+2 =2[2C(2k-2)+2]+2 =22C(2k-2)+22+2 =22[2C(2k-3)+2]+22+2 =23C(2k-3)+23+22+2 ... =2k-1C(2)+2k-1+2k-2+...+2 //C(2)=1 =2k-1+2k-1+2k-2+...+2 //后面部分为等比数列求和 =2k-1+2k-2 //2(k-1)=n/2,2k=n =n/2+n-2 =3n/2-2 b.蛮力法的算法如下: 算法 simpleMaxMin(A[l..r]) //用蛮力法得到数组A的最大值和最小值 //输入:数值数组A[l..r] //输出:最大值Max和最小值Min Max=Min=A[l]; for i=l+1 to r do if A[i]>Max Max←A[i]; else if A[i]<Min Min←A[i] return Max,Min } 时间复杂度t(n)=2(n-1) 算法MaxMin的时间复杂度为3n/2-2,simpleMaxMin的时间复杂度为2n-2,都属于Θ(n),但比较一下发现,MaxMin的速度要比simpleMaxMin的快一些。 6.应用合并排序对序列E,X,A,M,P,L,E按字母顺序排序. 3 2 1 8.a.对合并排序的最差键值比较次数的递推关系式求解.(for n=2k) b.建立合并排序的最优键值比较次数的递推关系式求解.(for n=2k) c.对于4.1节给出的合并排序算法,建立它的键值移动次数的递推关系式.考虑了该算法的键值移动次数之后,是否会影响它的效率类型呢? 解: a. 递推关系式见4.1节. b. 最好情况(列表升序或降序)下: Cbest(n)=2Cbest(n/2)+n/2 for n>1 (n=2k) Cbest(1)=0 c. 键值比较次数M(n) M(n)=2M(n)+2n for n>1 M(1)=0 习题4.2 1.应用快速排序对序列E,X,A,M,P,L,E按字母顺序排序 4. 请举一个n个元素数组的例子,使得我们有必须对它使用本节提到的”限位器”.限位器的值应是多少年来?为什么一个限位器就能满足所有的输入呢? Hints: With the pivot being the leftmost element, the left-to-right scan will get out of bounds if and only if the pivot is larger than the other elements. Appending a sentinel(限位器) of value equal A[0](or larger than A[0]) after the array’s last element , the quicksort algorithms will stop the index of the left-to-right scan of A[0..n-1] from going beyond position n. 8.设计一个算法对n个实数组成的数组进行重新排列,使得其中所有的负元素都位于正元素之前.这个算法需要兼顾空间和时间效率. Algorithms netbeforepos(A[0..n-1]) //使所有负元素位于正元素之前 //输入:实数组A[0..n-1] //输出:所有负元素位于于正元素之前的实数组A[0..n-1] A[-1]←-1; A[n]←1 //限位器 i←0; j←n-1 While i<j do While A[i]≤0 do i←i+1 while A[j]≥0 do j←j-1 swap A[i]and A[j] swap A[i]and A[j] //undo the last swap 当全是非负数或全是非正数时需要限位器. 习题4.3 1.(题略) 解: a.由公式4.4得:4次 b.二分查找判定树: 所以,14,31,42,74,85,98需要比较4次 c. d. 2. 当n=2k时,用反向替换法求下面的递推方程: 当n>1时, Cw(n)=Cw(n/2)+1, Cw(1)=1 (略) 4.如果对于一个100000个元素的数组成功查找的话,使用折半查找比顺序查找要快多少倍? 6. 如何将折半查找应用于范围查找?范围查找就是对于一个有序数组,找出位于给定值L、U之间(包含L、U)的所有元素,L<=U。该算法的最差效率是多少? Hints: Step1: 检查A[0]≤L,A[n-1]≥U是否成立,若不成立,则无解。否则进入step 2 Step2:在数组A中用二分查找法查找值L,如果查找成功,则返回数组下标m,否则l二分查找结束时的值. Step3: 在数组A中用二分查找法查找值U,如果查找成功,则返回数组下标m,否则r为二分查找结束时的值. 最后,结果就是在数组序号范围在low和high(包含low,high)之间的范围。(low和high是step2和step3的值。) 7. 为折半查找写递归的伪代码。 Algorithms BSR(A[o..n-1],K) //折半查找递归算法 //有序子数组A[l..r]和查找键值K //查找成功则输出其下标,否则输出-1 if l>r return -1 else m← (l+r)/2 if K=A[m] return m else if K< A[m] return BSR(A[l..m-1],K) else if K> A[m] return BSR(A[m+1,r],K) 8.设计一个只使用两路比较的折半查找算法,即只用≤和=, 或者只用≥和=. Algorithms TwoWaysBinarySearch(A[o..n-1],K) //二路比较的折半查找 //有序子数组A[l..r]和查找键值K //查找成功则输出其下标,否则输出-1 l←0, r←n-1 while l<r do m← (l+r)/2 if K≤A[m] r ←m else l ←m+1 if K=A[l] return l else return -1 习题4.4 1. 设计一个分治算法来计算二叉树的层数.(空树返回0,单顶点树返回1),并分析效率类型. Algorithms Level(Tree T) //递归计算二叉树的层数 //输入:二叉树T //输出:二叉树T的层数 If T=NULL return 0 Else return max{Level(TL),Level(TR)}+1 算法效率类型是Θ(n)(同4.4节算法height(T)) 2.选择一个二叉树的经典遍历算法(前\中\后序),写出它的递归伪代码,并求它的递归调用次数. Algorithms preorder(T) //先序遍历二叉树T //输入: 二叉树T //输出:先序遍历的结点序列表 If T≠NULL Visit T’s root Preorder(TL) Preorder(TR) 递归调用次数C(n)=扩展树中内部结点+外部结点=n+(n+1) =2n+1 7.设计一个算法计算有根有序树的高度. Algorithms height(T) //递归计算有根有序树的高度 //输入:一棵有根有序树的高度T //输出:T的高度 i=NumChildren(T) //根的孩子个数 if i=0 return 0 else return max{height(T1),height(T2),…,height(Ti)}+1 8.下面的算法试图计算一棵二叉树中叶子的数量 Algorithms LeafCount(T) //递归计算二叉树中叶子的数量 //输入:一棵二叉树 //输出:T中叶子的数量 if T=NULL return 0 else return LeafCount(TL)+LeafCount(TR) 应为: if T=NULL return 0 //empty tree else if TL =NULL AND TR=NULL return 1 //single-node tree else return LeafCount(TL)+LeafCount(TR) //general case 习题4.6 1.a.为最近对问题的一维版本设计一个直接基于分治技术的算法,并确定它的效率类型 b.对于这个问题,它是一个好算法吗? 解: a. Algorithms ClosestNumber(A[l..r]) //分治计算最近对问题的一维版本 //输入:升序排列的实数子数组A[l..r] //输出:最近数对的距离 If r=l return ∞ Else if r-l=1 return A[r]-A[l] Else return min{ClosestNumber(A[l… (l+r)/2 ]), ClosestNumber(A[ (l+r)/2 ...r]) A[ (l+r)/2 +1]-A[ (l+r)/2 ] } 设递归的时间效率为T(n): 对n=2k, 则: T(n)=2T(n/2)+c 利用主定理求解.T(n)=Θ(n) 2.(题略) 习题5.1 2.a.设计一个递归的减一算法,求n个实数构成的数组中最小元素的位置. b.确定该算法的时间效率,然后把它与该问题的蛮力算法作比较 Algorithms MinLocation(A[0..n-1]) //find the location of the smallest element in a given array //an array A[0..n-1] of real numbers //An index of the smallest element in A[0..n-1] if n=1 return 0 else temp←MinLocation(A[0..n-2]) if A[temp]<A[n-1] return temp else return n-1 时间效率分析见习题2.4中8 C(n)=C(n-1)+1 for n>1 C(1)=0 4.应用插入排序对序列example按照字母顺序排序 5.a.对于插入排序来说,为了避免在内部循环的每次迭代时判断边界条件j>=0,应该在待排序数组的第一个元素前放一个什么样的限位器? b.带限位器版本和原版本的效率类型相同吗? 解: a. 应该在待排序数组的第一个元素前放-∞或者小于等于最小元素值的元素. b. 效率类型相同.对于最差情况(数组是严格递减): 7.算法InsertSort2(A[0..n-1]) for i←1 to n-1 do j←i-1 while j>=0 and A[j]>A[j+1] do swap(A[j],A[j+1]) j←j+1 分析:在教材中算法InsertSort的内层循环包括一次键值赋值和一次序号递减,而算法InsertSort2的内层循环包括一次键值交换和一次序号递减,设一次赋值和一次序号递减的时间分别为ca和cd,那么算法InsertSort2和算法InsertSort运行时间的比率是(3ca+cd)/(ca+cd) 习题5.2 1.a.(略) b. 4. 习题5.3 1. DFS的栈状态: 退栈顺序: efgbcad 拓扑排序: dacbgfe b. 这是一个有环有向图.DFS 从a出发,…,遇到一条从e到a的回边. 4.能否利用顶点进入DFS栈的顺序(代替它们从栈中退出的顺序)来解决拓扑排序问题? Hints: 不能. 5. 对第1题中的有向图应用源删除算法. 拓扑序列: dabcgef 习题5.4 4.下面是生成排列的B.Heap算法. 算法HeapPermute(n) //实现生成排列的Heap算法 //输入:一个正整数n和一个全局数组A[1..n] //输出:A中元素的全排列 If n=1 Write A Else For i←1 to n do HeapPermute(n-1) If n is odd Swap A[1] and A[n] Else swap A[i] and A[n] 对于n=2,3,4的情况,手工跟踪该算法.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服