收藏 分销(赏)

空间向量的坐标运算测试题(A卷).doc

上传人:pc****0 文档编号:7774162 上传时间:2025-01-16 格式:DOC 页数:7 大小:368KB 下载积分:10 金币
下载 相关 举报
空间向量的坐标运算测试题(A卷).doc_第1页
第1页 / 共7页
空间向量的坐标运算测试题(A卷).doc_第2页
第2页 / 共7页


点击查看更多>>
资源描述
空间向量的坐标运算测试题(A卷) 姓名_____________________班级__________________分数___________________ 一.选择题(30分) 1.在空间直角坐标系中,已知点,那么下列说法正确的是( ) A. 点关于轴对称的坐标是 B. 点关于平面对称的坐标是 C. 点关于轴对称点的坐标是 D. 点关于原点对称点的坐标是 2.下列命题是真命题的是( ) A. 分别表示空间向量的有向线段所在的直线是异面直线,则这两个向量不是 共面向量. B. 若,则的长度相等而方向相同或相反. C. 若向量满足,且同向,则. D. 若两个非零向量满足,则‖. 3.已知点,且该点在三个坐标平面平面,平面,平 面上的射影的坐标依次为,和,则( ) A. B. C. D.以上结论都不对 4.到定点的距离小于或等于1的点集合为( ) A. B. C. D. 5.已知,则的取值范围是( ) A. B. C. D. 6.已知,则向量的夹角为( ) A. B. C. D. 二.填空题(60分) 7.已知为单位正交基,且,则向量与 向量的坐标分别是______________;_________________. 8.若同方向的单位向量是_________________. 9. 已知,则的最小值是_______________. 10.若向量 ,夹角的余弦值为,则等于__________. 11.已知则向量的夹角是_________. 12.两两垂直,则 13.设的夹角为;则等于______________. 14.已知长方体 的交点,则DE的长度为______________. 15.设向量互相垂直,向量与它们构成的角都是,且 . 16.已知,则向量的关系分别是_____________,___________________. 三.解答题(60分) 17.已知,求的值.(10分) 18.设向量并确定的关系,使轴垂直.(12分) 19.如图:在空间四边形ABCD中,AB,BC,BD两两垂直,且AB=BC=2,E是AC的中点,异面直线AD和BE所成的角为,求BD的长度.(12分) `20.在棱长为1的正方体中,分别是的中点,在棱上,且,H为的中点,应用空间向量方法求解下列问题. (1)求证:; (2)求EF与所成的角的余弦; (3)求FH的长.(14分) 21.P是平面ABCD外的点,四边形ABCD是平行四边形,. (1)求证:PA平面ABCD. (2)对于向量,定义一种运算: ,试计算的绝对值;说明其与几何体P-ABCD的体积关系,并由此猜想向量这种运算的绝对值的几何意义(几何体P-ABCD叫四棱锥,锥体体积公式:V=).(12分) 试卷答案: 选择题:1-6:D,D,A,A,C,C. 填空题:7.(1,-2,1),(-5,7,7);8.(0,,);9.;10.-2;11.;12.-64,-26,-17;13.2;14.;15.-62,373;16. 解答题:17.解:由………………………………① 又即 ………………………………………………② 由①②有: 18.解:(9,15,-12)-(4,2,16)=(5,13,-28) (3,5,-4)(2,1,8)=6+5-32=-21 由 即当满足=0即使与z轴垂直. 19.解:建立如图所示的空间直角坐标系,由题意有,则 E(1,1,0).设D(0,0,z),(z0)则(1,1,0),=(0,-2,z) 20.解:以D为坐标原点,建立如图所示的空间直角坐标系D-xyz.则, (2),由(1)知 故EF与所成角的余弦值为. (3)的中点, 21.解:(1) (2) V= 猜测:在几何上可表示以AB,AD,AP为棱的平等六面体的体积(或以AB,AD,AP为棱的四棱柱的体积) 第 7 页 共 7 页
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服