1、2013年普通高等学校招生全国统一考试(陕西卷)文科数学注意事项:1. 本试卷分为两部分, 第一部分为选择题, 第二部分为非选择题. 2. 考生领到试卷后, 须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息. 3. 所有解答必须填写在答题卡上指定区域内. 考试结束后, 将本试卷和答题卡一并交回. 第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分)1. 设全集为R, 函数的定义域为M, 则为(A) (,1)(B) (1, + )(C) (D) 2. 已知向量 , 若a/b, 则实数m等于(A) (B) (
2、C) 或(D) 03. 设a, b, c均为不等于1的正实数, 则下列等式中恒成立的是(A) (B) (C) (D) 输入xIf x50 Theny = 0.5 * xElse y = 25 + 0.6*(x-50)End If输出y4. 根据下列算法语句, 当输入x为60时, 输出y的值为(A) 25(B) 30(C) 31(D) 615. 对一批产品的长度(单位: mm)进行抽样检测, 下图喂检测结果的频率分布直方图. 根据标准, 产品长度在区间20,25)上的为一等品, 在区间15,20)和区间25,30)上的为二等品, 在区间10,15)和30,35)上的为三等品. 用频率估计概率,
3、现从该批产品中随机抽取一件, 则其为二等品的概率为(A) 0.09(B) 0.20 (C) 0.25(D) 0.456. 设z是复数, 则下列命题中的假命题是(A) 若, 则z是实数(B) 若, 则z是虚数(C) 若z是虚数, 则(D) 若z是纯虚数, 则 7. 若点(x,y)位于曲线y = |x|与y = 2所围成的封闭区域, 则2xy的最小值为(A) 6(B) 2(C) 0(D) 27. 已知点M(a,b)在圆外, 则直线ax + by = 1与圆O的位置关系是(A) 相切(B) 相交(C) 相离(D) 不确定7. 设ABC的内角A, B, C所对的边分别为a, b, c, 若, 则ABC
4、的形状为(A) 直角三角形(B) 锐角三角形(C) 钝角三角形(D) 不确定10. 设x表示不大于x的最大整数, 则对任意实数x, y, 有(A) x = x(B) x + = x(C) 2x = 2x(D) 二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分)11. 双曲线的离心率为 .12. 某几何体的三视图如图所示, 则其表面积为 .13. 观察下列等式: 照此规律, 第n个等式可为 . 14. 在如图所示的锐角三角形空地中, 欲建一个面积最大的内接矩形花园(阴影部分), 则其边长x为 (m).15. (考生请注意:请在下列三题中任选一题作答, 如果多
5、做, 则按所做的第一题计分)A. (不等式选做题) 设a, bR, |ab|2, 则关于实数x的不等式的解集是 . B. (几何证明选做题) 如图, AB与CD相交于点E, 过E作BC的平行线与AD的延长线相交于点P. 已知, PD = 2DA = 2, 则PE = . C. (坐标系与参数方程选做题) 圆锥曲线 (t为参数)的焦点坐标是 .三、解答题: 解答应写出文字说明、证明过程及演算步骤(本大题共6小题,共75分)16. (本小题满分12分)已知向量, 设函数. () 求f (x)的最小正周期. () 求f (x) 在上的最大值和最小值. 17. (本小题满分12分) 设Sn表示数列的前
6、n项和. () 若为等差数列, 推导Sn的计算公式; () 若, 且对所有正整数n, 有. 判断是否为等比数列. 18. (本小题满分12分)如图, 四棱柱ABCDA1B1C1D1的底面ABCD是正方形, O为底面中心, A1O平面ABCD, . () 证明: A1BD / 平面CD1B1; () 求三棱柱ABDA1B1D1的体积. 19. (本小题满分12分) 有7位歌手(1至7号)参加一场歌唱比赛, 由500名大众评委现场投票决定歌手名次, 根据年龄将大众评委分为5组, 各组的人数如下:组别ABCDE人数5010015015050() 为了调查评委对7位歌手的支持状况, 现用分层抽样方法从
7、各组中抽取若干评委, 其中从B组中抽取了6人. 请将其余各组抽取的人数填入下表. 组别ABCDE人数5010015015050抽取人数6() 在()中, 若A, B两组被抽到的评委中各有2人支持1号歌手, 现从这两组被抽到的评委中分别任选1人, 求这2人都支持1号歌手的概率. 20. (本小题满分13分)已知动点M(x,y)到直线l:x = 4的距离是它到点N(1,0)的距离的2倍. () 求动点M的轨迹C的方程; () 过点P(0,3)的直线m与轨迹C交于A, B两点. 若A是PB的中点, 求直线m的斜率. 21. (本小题满分14分)已知函数. () 求f(x)的反函数的图象上图象上点(1,0)处的切线方程; () 证明: 曲线y = f (x) 与曲线有唯一公共点. () 设ab, 比较与的大小, 并说明理由. 新|课|标|第|一|网