收藏 分销(赏)

全等三角形解题知识点(配题).doc

上传人:xrp****65 文档编号:7726371 上传时间:2025-01-14 格式:DOC 页数:4 大小:85.50KB
下载 相关 举报
全等三角形解题知识点(配题).doc_第1页
第1页 / 共4页
全等三角形解题知识点(配题).doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
    1.等边三角形abc,延长ba到点E延长BC到点D,使AE=BD,求CE=DE 解析过程: 证明: 延长BD至F,使BF=BE, ∵△ABC是等边三角形,∴∠B=60°. ∴△EBF是等边三角形, BE=FE,∠B=∠F=60°. 又 DF=BF-BD=BE-AE=AB=BC, ∴ △EBC≌△EFD . ∴ CE=DE. 规律方法: 构造全等三角形进行证明 所属知识点: [三角形] 包含次级知识点: 全等形的概念、全等三角形的性质及判定 相关课程: 初二上学期数学课程| 初二上学期四科联报 知识点总结 一、全等图形、全等三角形: 1.全等图形:能够完全重合的两个图形就是全等图形。 2.全等图形的性质:全等多边形的对应边、对应角分别相等。 3.全等三角形: 三角形是特殊的多边形,因此,全等三角形的对应边、对应角分别相等。同样,如果两个三角形的边、角分别对应相等,那么这两个三角形全等。 说明:全等三角形对应边上的高,中线相等,对应角的平分线相等;全等三角形的周长,面积也都相等。 这里要注意:(1)周长相等的两个三角形,不一定全等;(2)面积相等的两个三角形,也不一定全等。 二、全等三角形的判定: 1.一般三角形全等的判定 (1)边边 边公理:三边对应相等的两个三角形全等(“边边边”或“SSS”)。 (2)边角公理:两边和它们的夹角对应相等的两个三角形全等(“边角边”或“SAS”)。 (3)角边角公理: 两个角和它们的夹边分别对应相等的两个三角形全等(“角边角”或“ASA”)。 (4)角角边定理:有两角和其中一角的对边对应相等的两个三角形全等(“角角边”或“AAS”)。 2.直角三角形全等的判定 利用一般三角形全等的判定都能证明直角三角形全等. 斜边和一条直角边对应相等的两个直角三角形全等(“斜边、直角边”或“HL”). 注意:两边一对角(SSA)和三角(AAA)对应相等的两个三角形不一定全等。 三、角平分线的性质及判定: 性质定理:角平分线上的点到该角两边的距离相等。 判定定理:到角的两边距离相等的点在该角的角平分线上。 四、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤: 1.确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系); 2.回顾三角形判定公理,搞清还需要什么;3.正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。 常见考法 (1)利用全等三角形的性质:①证明线段(或角)相等;②证明两条线段的和差等于另一条线段;③证明面积相等; (2)利用判定公理来证明两个三角形全等; (3)题目开放性问题,补全条件,使两个三角形全等。 误区提醒 (1)忽略题目中的隐含条件; (2)不能正确使用判定公理。 版权所有,不得复制
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服