收藏 分销(赏)

二次函数中的平行四边形问题PPT课件.ppt

上传人:胜**** 文档编号:771642 上传时间:2024-03-11 格式:PPT 页数:39 大小:1.49MB
下载 相关 举报
二次函数中的平行四边形问题PPT课件.ppt_第1页
第1页 / 共39页
二次函数中的平行四边形问题PPT课件.ppt_第2页
第2页 / 共39页
二次函数中的平行四边形问题PPT课件.ppt_第3页
第3页 / 共39页
二次函数中的平行四边形问题PPT课件.ppt_第4页
第4页 / 共39页
二次函数中的平行四边形问题PPT课件.ppt_第5页
第5页 / 共39页
点击查看更多>>
资源描述

1、二次函数中的平行四边形问题二次函数中的平行四边形问题 同学们努力吧,一切皆有可能1.二次函数的三种解析式分别是什么?y=a(x-x1)(x-x2)(a0)y=ax+bx+c(a0)y=a(x-h)+k(a0)2.平行四边形的主要特征有哪些?平行且相等;回顾交流回顾交流回顾交流回顾交流(1)一般式:_(2)顶点式:_(3)交点式:_相等;互相平分(1)对边_(2)对角_(3)对角线_3.以不在同一条直线上的三个点为顶点,可以画出几个平行四边形?试一试,画一画。以两个点为顶点呢?回顾交流回顾交流回顾交流回顾交流ABCD1D2D3ABCDOCD1.会用待定系数法求二次函数的解析式2.会用分类思想讨论

2、平行四边形的存在性问题3.会用数形结合的思想解决综合性问题重点:分类讨论平行四边形的存在性难点:数形结合思想及画图学习目标学习目标学习目标学习目标二二.关于平行四边形点的存在性问题关于平行四边形点的存在性问题2.典型示例1.如图,抛物线与直线交于C、D两点,其中点C在y轴上,点D的坐标为。点P是y轴右侧的抛物线上一动点,过点P作PEx轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O,C,P,F为顶点的四边形是平行四边形?请说明理由。演示二二.关于平行四边形点的存在性问题关于平行四边形点的存在性问题2.典型示例P点横坐标为m,且OC=2PFCO2二二.

3、关于平行四边形点的存在性问题关于平行四边形点的存在性问题2.典型示例二二.关于平行四边形点的存在性问题关于平行四边形点的存在性问题2.典型示例以OC为边的平行四边形PFOC2二二.关于平行四边形点的存在性问题关于平行四边形点的存在性问题2.典型示例2.如图,已知抛物线经过点A(2,0),B(3,3)及原点O,顶点为C(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且以A,O,D,E为顶点的四边形是平行四边形,求点D的坐标;演示二二.关于平行四边形点的存在性问题关于平行四边形点的存在性问题2.典型示例以OA为一边的平行边形OADE;OA=2,对称轴x=1OAED且OAED

4、设E(1,m),则D(3,m)点D在抛物线上m32233D1(3,3)将点E向左平移2平单位可得点D2(-1,3)二二.关于平行四边形点的存在性问题关于平行四边形点的存在性问题以OA为对角线的平行边形ODAE;此时,点D与顶点C重合;D(1,-1)2.典型示例二二.关于平行四边形点的存在性问题关于平行四边形点的存在性问题3.如图,矩形OABC在平面直角坐标系xoy中,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=4,OC=3,若抛物线的顶点在边BC上,且抛物线经过O、A两点,直线AC交抛物线于点D;(1)求抛物线的解析式;(2)求点D的坐标;(3)若点M在抛物线上,点N在x轴上,是否存在以

5、A、D、M、N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;2.典型示例演示二二.关于平行四边形点的存在性问题关于平行四边形点的存在性问题2.典型示例分析:过点D作x轴的平行线,交抛物线于点M,由DMAN且DMAN得A(4,0)且DM=2N1(2,0)N2(6,0)AN为边的平行四边形二二.关于平行四边形点的存在性问题关于平行四边形点的存在性问题2.典型示例分析:过点N作AD轴的平行线,交抛物线于点M,由DANM且DANM得设点N(n,0),则有:把点M的坐标代入二次函数中即可求得n的值AN为对角线的平行四边形二二.关于平行四边形点的存在性问题关于平行四边形点的存在

6、性问题2.典型示例例4.在平面直角坐标系xoy中,抛物线y=mx22x与x轴正半轴交于点A,顶点为B,(1)求点B的坐标(用含的代数式表示);(2)已知点C(0,2),直线AC与BO交于点D,与该抛物线对称轴交于点E,且OCDBED,求m的值;(3)抛物线上有一点N(n,),对称轴上一点F(3,),设点P在抛物线上,在y轴上是否存在点H,使以N,F,H,P为顶点的四边形是平行四边形?演示二二.关于平行四边形点的存在性问题关于平行四边形点的存在性问题2.典型示例NF为边的平行四边形NF为对角线的平行四边形例1:如图,已知二次函数图象的顶点坐标为(2,0),直线y=x+1与二次函数的图象交于A,B

7、两点,其中点A在y轴上(1)求这个二次函数的解析式;(2)若点C在线段AB上,且C点的横坐标为4,过C点作CEx轴于E点,CE与二次函数的图象交于D点y轴上是否存在点K,使以K,A,D,C为顶点的四边形是平行四边形,若存在,写出K点的坐标;若不存在,请说明理由三定点问题三定点问题三定点问题三定点问题y=x+1例题分析例题分析例题分析例题分析K1K2K31.已知顶点坐标为(2,0),可以设此二次函数解析式为:,即_2.A点的坐标是,代入解析式,解得a=_3.求得二次函数解析式为_4.C、D点的坐标分别是多少?C(,),D(,);线段CD的长是_4_5.以K,A,D,C为顶点的平行四边形有哪几种情

8、况,在上图中画一画。6.写出符合条件的K点的坐标:_,_y=a(x-h)+ky=a(x-2)(0,1)y=(x-2)45414K1(0,5)K2(0,-3)D1D2D3练习1:二次函数y=x2+bx+c的图象经过点A(4,3),B(1,0)(1)求b、c的值;(2)若此二次函数图象与y轴交于点C,在坐标平面内是否存在点D,使得以A、B、C、D为顶点的四边形为平行四边形?若存在,直接写出所有符合条件D点的坐标;若不存在,说明理由(2)存在点D,D1(3,6),D2(-3,0),D3(5,0)解:(1)b=-4;c=3牛刀小试牛刀小试牛刀小试牛刀小试2024/3/9 周六20例2:如图,抛物线的顶

9、点为C(-1,-1),且经过点A和坐标原点O,(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,是否存在以A、O、D、E为顶点的平行四边形,若存在,求点D的坐标;若不存在,说明理由。两定点问题两定点问题两定点问题两定点问题问题:1.可以设此二次函数解析式为:_,即_2.要确定二次函数解析式,还需要把哪个点的坐标代入上面的解析式?;可代入解得a=_3.求得二次函数解析式为_4.这个抛物线的对称轴是直线,A点的坐标是,线段OA的长是.5.怎样画出以定点A、O为顶点的平行四边形?以OA为画平行四边形以OA为_画平行四边形。6.知道D点的横坐标,如何求D点的纵坐标?7.根据图形,

10、求出D点的坐标分别是_例题分析例题分析例题分析例题分析练习2:已知,抛物线y=ax2+x经过点B(4,0)。(1)求此抛物线的解析式及顶点坐标;(2)若点D在抛物线的对称轴上,点C在抛物线上,且以O、D、C、B四点为顶点的四边形为平行四边形,求点C的坐标。大显身手大显身手大显身手大显身手解:(1)抛物线解析式为y=x2+x顶点坐标是(2,1)(2)三种情况,C1(-2,-3),C2(6,-3),C3(2,1)DC1C2MC3D11.在二次函数中画出所有符合条件的平行四边形;2.用平移、平行四边形的特征等知识求点的坐标。解决二次函数中平行四边形存在性问题的基本步骤:归纳总结归纳总结归纳总结归纳总

11、结如图,在平面直角坐标系中,抛物线经过A(-1,0),B(3,0),C(0,-1).(1)求此抛物线的解析式;(2)点Q在y轴上,点P在抛物线上,是否存在以点Q、P、A、B为顶点且以AB为一边的平行四边形,求所有满足条件的点P坐标.作业作业作业作业1 1作业作业作业作业2 2(2011金昌)如图,抛物线C1:y=x2+2x-3的顶点为M,与x轴相交于A、B两点,与y轴交于点D;抛物线C2与抛物线C1关于y轴对称,顶点为N,与x轴相交于E、F两点(1)抛物线C2的函数关系式是;(2)点A、D、N是否在同一条直线上?说明你的理由;(3)点P是C1上的动点,点P是C2上的动点,若以OD为一边、PP为

12、其对边的四边形ODPP(或ODPP)是平行四边形,试求所有满足条件的点P的坐标;(4)在C1上是否存在点Q,使AFQ是以AF为斜边且有一个角为30的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由例2:如图,抛物线的顶点为C(-1,-1),且经过点A,点B和坐标原点O,(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,是否存在以A、O、D、E为顶点的平行四边形,若存在,求点D的坐标;若不存在,说明理由。解:(1)顶点坐标为(-1,-1),可设解析式为:y=a(x+1)2-1(a0)把x=0,y=0代入y=a(x+1)2-1得:a=1所以二次函数的解析式为:y=(x

13、+1)2-1=x2+2xED1D2E1D3两定点问题两定点问题两定点问题两定点问题(2)存在,D1(1,3),D2(-3,3);D3(-1,-1)(2014珠海,第22题9分)如图,矩形OABC的顶点A(2,0)、C(0,2)将矩形OABC绕点O逆时针旋转30得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2x;(2)如果四边形OHMN为平行四边形,求点D的坐标;3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R

14、、E两点之间(不含点R、E)运动,设PQH的面积为s,当时,确定点Q的横坐标的取值范围(2014海南,第24题14分)如图,对称轴为直线x=2的抛物线经过A(1,0),C(0,5)两点,与x轴另一交点为B已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由 (2014莱芜,第24题12分)如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4x于C、D两点抛物线y=ax2+bx+c经过O、C、D三点(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M的横坐标;若不存在,请说明理由;(3)若AOC沿CD方向平移(点C在线段CD上,且不与点D重合),在平移的过程中AOC与OBD重叠部分的面积记为S,试求S的最大值 2024/3/9 周六39

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服