收藏 分销(赏)

二次函数(含答案).doc

上传人:xrp****65 文档编号:7688332 上传时间:2025-01-12 格式:DOC 页数:11 大小:343.50KB
下载 相关 举报
二次函数(含答案).doc_第1页
第1页 / 共11页
二次函数(含答案).doc_第2页
第2页 / 共11页
二次函数(含答案).doc_第3页
第3页 / 共11页
二次函数(含答案).doc_第4页
第4页 / 共11页
二次函数(含答案).doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、二次函数二次函数这一章在初中数学中占有重要地位,同时也是高中数学学习的基础.作为初高中衔接的内容,二次函数在中考命题中一直是“重头戏”,根据对近几年中考试卷的分析,预计2010年中考中对二次函数的考查题型有低档的填空题、选择题,中高档的解答题,分值一般为915分,除考查定义、识图、性质、求解析式等常规题外,还会出现与二次函数有关的贴近生活实际的应用题,阅读理解题和探究题,二次函数与其他函数方程、不等式、几何知识的综合在压轴题中出现的可能性很大.知识梳理:练习:1.抛物线的对称轴是( )A BC D 2.要得到二次函数的图象,需将的图象( )A向左平移2个单位,再向下平移2个单位B向右平移2个单

2、位,再向上平移2个单位C向左平移1个单位,再向上平移1个单位D向右平移1个单位,再向下平移1个单位答案:1.A 2.D最新考题1.(2009年四川省内江市)抛物线的顶点坐标是( )A(2,3) B(2,3) C(2,3) D(2,3)2.(2009年泸州)在平面直角坐标系中,将二次函数的图象向上平移2个单位,所得图象的解析式为A B C D答案:1.A 2.B知识点2:二次函数的图形与性质例1:如图1所示,二次函数y=ax2+bx+c的图象开口向上,图象经过点(1,2)和(1,0)且与y轴交于负半轴.第(1)问:给出四个结论:a0;b0;c0;a+b+c=0,其中正确的结论的序号是 . 第(2

3、)问:给出四个结论:abc0;a+c=1;a1.其中正确的结论的序号是_.例2:抛物线y=x2+(m1)x+m与y轴交于(0,3)点,(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x的增大而减小?思路点拨:由已知点(0,3)代入y=x2+(m1)x+m即可求得m的值,即可知道二次函数解析式,并可画出图象,然后根据图象和二次函数性质可得(2)(3)(4).解:(1)由题意将(0,3)代入解析式可得m=3, 抛物线为y=x2+2x+3.图象(图2):(2)令y=0,则x2+2x+3=0,得x1=1,x2

4、=3; 抛物线与x轴的交点为(1,0),(3,0). y=x2+2x+3=(x1)2+4, 抛物线顶点坐标为(1,4);(3)由图象可知:当1x1时,y的值随x值的增大而减小.练习:1.如图,直角坐标系中,两条抛物线有相同的对称轴,下列关系不正确的是( )A B C D2.函数y =ax1与y =ax2bx1(a0)的图象可能是( )A B C D答案:1.B 2.C最新考题1.(2009深圳)二次函数的图象如图所示,若点A(1,y1)、B(2,y2)是它图象上的两点,则y1与y2的大小关系是() A B C D不能确定2.(2009北京)如图,C为O直径AB上一动点,过点C的直线交O于D、E

5、两点,且ACD=45,DFAB于点F,EGAB于点G,当点C在AB上运动时,设AF=,DE=,下列中图象中,能表示与的函数关系式的图象大致是( )3.(2009年台州)已知二次函数的与的部分对应值如下表:013131则下列判断中正确的是()A抛物线开口向上 B抛物线与轴交于负半轴C当4时,0 D方程的正根在3与4之间答案:1.C 2.A 3.D知识点3:二次函数的应用例1:如图,从地面垂直向上抛出一小球,小球的高度h(单位:米)与小球运动时间(单位:秒)的函数关系式是,那么小球运动中的最大高度 随楼层数x(楼)的变化而变化(x=1,2,3,4,5,6,7,8);已知点(x,y)都在一个二次函数

6、的图像上(如图6所示),则6楼房子的价格为 元/平方米 思路点拨:观察函数图像得:图像关于对称,当因为x=2到对称轴的距离与x=6到对称轴的距离相等。所以,当练习:1.出售某种文具盒,若每个获利元,一天可售出个,则当 元时,一天出售该种文具盒的总利润最大2.如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20cm,水位上升3m就达到警戒线CD,这时水面宽度为10cm.(1)在如图所示的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥桥顶?答案:1. 3 ;2.解:(1)设所求抛物线解析式为y=ax2,设D(5,b),

7、则B(10,b3), y=;最新考题1.(2009年台湾)向上发射一枚炮弹,经x秒后的高度为y公尺,且时间与高度关系为y=ax2+bx。若此炮弹在第7秒与第14秒时的高度相等,则再下列哪一个时间的高度是最高的?( ) A 第8秒 B. 第10秒 C. 第12秒 D. 第15秒 2.(2009年河北)某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数(x0),若该车某次的刹车距离为5 m,则开始刹车时的速度为( )A40 m/sB20 m/s C10 m/sD5 m/s答案:1. B 2. C过关检测一、选择题1抛物线y=2(x1)23与y轴的交点纵坐标为()(A)3 (B)4

8、 (C)5()12将抛物线y=3x2向右平移两个单位,再向下平移4个单位,所得抛物线是()(A) y=3(x+2)2+4 (B) y=3(x2)2+4 (C) y=3(x2)24 (D)y=3(x+2)243抛物线y =x2,y =3x2,y =x2的图象开口最大的是()(A) y =x2 (B)y =3x2 (C)y =x2 (D)无法确定4二次函数y =x28x+c的最小值是0,那么c的值等于()(A)4 (B)8 (C)4 (D)165抛物线y=2x2+4x+3的顶点坐标是()(A)(1,5) (B)(1,5) (C)(1,4) (D) (2,7)6过点(1,0),B(3,0),C(1,

9、2)三点的抛物线的顶点坐标是()(A)(1,2) (B)(1,) (C) (1,5) (D)(2,)7 若二次函数y=ax2+c,当x取x1,x2(x1x2)时,函数值相等,则当x取x1+x2时,函数值为()(A)a+c (B)ac (C)c (D)c8 在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为,则当物体经过的路程是88米时,该物体所经过的时间为()(A)2秒(B)4秒(C)6秒(D)8秒9如图2,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点, 且AE=BF=CG=DH, 设小正方形EFGH的面积为,AE为,则关于的函数图象大致是() 图2 (A) (B)

10、 (C) (D)10抛物线y=ax2+bx+c的图角如图3,则下列结论:abc0;a+b+c=2;a;b1其中正确的结论是()(A) (B) (C) (D) 二、填空题1已知函数y=ax2+bx+c,当x=3时,函数的最大值为4,当x=0时,y=14,则函数关系式_2请写出一个开口向上,对称轴为直线x=2,且与y轴的交点坐标为(0,3)的抛物线的解析式 3函数的图象与轴的交点坐标是_4抛物线y= ( x 1)2 7的对称轴是直线 5二次函数y=2x2x3的开口方向_,对称轴_,顶点坐标_6已知抛物线y=ax2+bx+c(a0)与x轴的两个交点的坐标是(5,0),(2,0),则方程ax2+bx+

11、c=0(a0)的解是_7用配方法把二次函数y=2x2+2x5化成y=a(xh)2+k的形式为_8抛物线y=(m4)x22mxm6的顶点在x轴上,则m=_9若函数y=a(xh)2+k的图象经过原点,最小值为8,且形状与抛物线y=2x22x+3相同,则此函数关系式_10如图1,直角坐标系中一条抛物线经过网格点A、B、C,其中,B点坐标为,则该抛物线的关系式_ 三、解答题21 已知一次函的图象过点(0,5) 求m的值,并写出二次函数的关系式; 求出二次函数图象的顶点坐标、对称轴22已知抛物线 经过(1,0),(0,3),(2,3)三点求这条抛物线的表达式;写出抛物线的开口方向、对称轴和顶点坐标23有

12、一个抛物线形的桥洞,桥洞离水面的最大高度BM为3米,跨度OA为6米,以OA所在直线为x轴,O为原点建立直角坐标系(如右图所示)请你直接写出O、A、M三点的坐标;一艘小船平放着一些长3米,宽2米且厚度均匀的矩形木板,要使该小船能通过此桥洞,问这些木板最高可堆放多少米(设船身底板与水面同一平面)? 24 甲车在弯路作刹车试验,收集到的数据如下表所示:速度x(千米/小时)0510152025刹车距离y(米)026(1)请用上表中的各对数据(x,y)作为点的坐标,在右图所示的坐标系中画出甲车刹车距离y(米)(2)在一个限速为40千米/时的弯路上,甲、乙两车相向速度x(千米/时)的函数图象,并求函数的解

13、析式而行,同时刹车,但还是相撞了事后测得甲、乙两车的刹车距离分别为12米和10.5米,又知乙车的刹车距离y(米)与速度x(千米/时)满足函数,请你就两车的速度方面分析相撞的原因25 某企业投资100万元引进一条产品加工生产线,若不计维修、保养费用,预计投产后每年可创利33万该生产线投产后,从第1年到第x年的维修、保养费用累计为y(万元),且y=ax2+bx,若第1年的维修、保养费用为2万元,第2年为4万元(1)求y的解析式;(2)投产后,这个企业在第几年就能收回投资?参考答案一、15 CCADB 610 DDBBB(2)顶点坐标是(3,4),对称轴是直线x=3 22由已知,得解得a=1,b=2

14、,c=3所以y=x22x3(2)开口向上,对称轴x=1,顶点(1,4)23 解:(1)0(0,0),A(6,0),M(3,3)(2)设抛物线的关系式为y=a(x3)2+3,因为抛物线过点(0,0),所以0=a(03)2+3,解得a=,所以y=(x3)2+3=x2+2x,要使木版堆放最高,依据题意,得B点应是木版宽CD的中点,把x=2代入y=x2+2x,得y=,所以这些木版最高可堆放米24 解:(1)如图, 设函数的解析式为yax2bxc因为图象经过点(0,0)、(10,2)、(20,6), 所以c0(2)因为y12,所以12,解得x130,x240(不符合题意,舍去)又因为y乙10.5,所以,x42因为乙车速度为42千米/时,大于40千米/时,所以,就速度方面原因,乙车超速,导致两车相撞25(1)由题意,x=1时,y=2;x=2时,y=2+4=6,分别代入y=ax2+bx,得a+b=2,4a+2b=6,解得,a=1,b=1,所以y=x2+x(2)设G33x100x2x,则G=x2+32x100=(x16)2+156由于当1x16时,G随x的增大而增大,故当x=4时,即第4年可收回投资11

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服