1、1.2 反比例函数的图象和性质一、教学目标1使学生进一步理解和掌握反比例函数及其图象与性质2能灵活运用函数图象和性质解决一些较综合的问题3深刻领会函数解析式与函数图象之间的联系,体会数形结合及转化的思想方法二、重点、难点1重点:理解并掌握反比例函数的图象和性质,并能利用它们解决一些综合问题2难点:学会从图象上分析、解决问题3难点的突破方法:在前一节的基础上,可适当增加一些较综合的题目,帮助学生熟练掌握反比例函数的图象和性质,要让学生学会如何通过函数图象分析解析式,或由函数解析式分析图象的方法,以便更好的理解数形结合的思想,最终能达到从“数”和“形”两方面去分析问题、解决问题。三、例题的意图分析
2、教材第51页的例3一是让学生理解点在图象上的含义,掌握如何用待定系数法去求解析式,复习巩固反比例函数的意义;二是通过函数解析式去分析图象及性质,由“数”到“形”,体会数形结合思想,加深学生对反比例函数图象和性质的理解。教材第52页的例4是已知函数图象求解析式中的未知系数,并由双曲线的变化趋势分析函数值y随x的变化情况,此过程是由“形”到“数”,目的是为了提高学生从函数图象中获取信息的能力,加深对函数图象及性质的理解。补充例1目的是引导学生在解有关函数问题时,要数形结合,另外,在分析反比例函数的增减性时,一定要注意强调在哪个象限内。补充例2是一道有关一次函数和反比例函数的综合题,目的是提高学生的
3、识图能力,并能灵活运用所学知识解决一些较综合的问题。四、课堂引入复习上节课所学的内容1什么是反比例函数?2反比例函数的图象是什么?有什么性质?五、例习题分析例3见教材P51分析:反比例函数的图象位置及y随x的变化情况取决于常数k的符号,因此要先求常数k,而题中已知图象经过点A(2,6),即表明把A点坐标代入解析式成立,所以用待定系数法能求出k,这样解析式也就确定了。例4见教材P52 例1(补充)若点A(2,a)、B(1,b)、C(3,c)在反比例函数(k0)图象上,则a、b、c的大小关系怎样?分析:由k0可知,双曲线位于第二、四象限,且在每一象限内,y随x的增大而增大,因为A、B在第二象限,且
4、12,故ba0;又C在第四象限,则c0,所以ba0c说明:由于双曲线的两个分支在两个不同的象限内,因此函数y随x的增减性就不能连续的看,一定要强调“在每一象限内”,否则,笼统说k0时y随x的增大而增大,就会误认为3最大,则c最大,出现错误。此题还可以画草图,比较a、b、c的大小,利用图象直观易懂,不易出错,应学会使用。例2 (补充)如图, 一次函数ykxb的图象与反比例函数的图象交于A(2,1)、B(1,n)两点(1)求反比例函数和一次函数的解析式(2)根据图象写出一次函数的值大于反比例函数的值的x的取值范围分析:因为A点在反比例函数的图象上,可先求出反比例函数的解析式,又B点在反比例函数的图
5、象上,代入即可求出n的值,最后再由A、B两点坐标求出一次函数解析式yx1,第(2)问根据图象可得x的取值范围x2或0x1,这是因为比较两个不同函数的值的大小时,就是看这两个函数图象哪个在上方,哪个在下方。六、随堂练习1若直线ykxb经过第一、二、四象限,则函数的图象在( )(A)第一、三象限 (B)第二、四象限 (C)第三、四象限 (D)第一、二象限2已知点(1,y1)、(2,y2)、(,y3)在双曲线上,则下列关系式正确的是( )(A)y1y2y3 (B)y1y3y2 (C)y2y1y3 (D)y3y1y2七、课后练习1已知反比例函数的图象在每个象限内函数值y随自变量x的增大而减小,且k的值还满足2k1,若k为整数,求反比例函数的解析式2已知一次函数的图像与反比例函数的图像交于A、B两点,且点A的横坐标和点B的纵坐标都是2 , 求(1)一次函数的解析式; (2)AOB的面积答案:1或或2(1)yx2,(2)面积为6