1、2 中位数与众数【知识与技能】1.认识中位数和众数,并会求出一组数据中的众数和中位数.2.了解平均数、中位数、众数在描述数据时的差异,并能灵活应用这三个数据代表解决实际问题.【过程与方法】经历探索中位数、众数的概念的过程,学会根据数据做出判断的初步思想,合理论证.领会平均数、中位数、众数这三个特征数的联系与区别.【情感态度】培养学生良好的数字信息处理的意识,建立学好数学的自信心,体会发展的内涵与价值.【教学重点】认识中位数、众数这两种数据代表.【教学难点】灵活运用平均数、中位数、众数,分析数据信息,做出决策.一、创设情境,导入新课某公司员工的月工资如下:问题:这个公司员工的月平均工资是多少?这
2、个公司员工收入到底怎样?你如何看待?【教学说明】为学生提供一个活生生的生活情境和值得深思的问题,激起学生认知的矛盾.因为疑问是构建数学的起点,对学生的心理智力产生刺激,让他们从问题中发现,有利于建立新的认知结构.二、思考探究,获取新知1.中位数与众数概念.观察:(1)这个公司员工的工资是按从高到低排列的,哪一位员工工资处在“正中间”?(2)9个员工当中,哪一种月工资出现的次数最多?【教学说明】这两个问题的提出让学生在心目中对于中位数和众数有了初步的认识,为下面正确理解它们的概念打下了基础.【归纳结论】一般地,几个数据按大小顺序排列,处于最中间位置的一个数据(或最中间的两个数据的平均数)叫做这组
3、数据的中位数.一组数据中出现次数最多的那个数据叫做这组数据的众数.讨论:(1)在上面的问题中,你认为用平均数、中位数和众数中哪个数据描述该公司员工收入的集中趋势更合适?(2)为什么该公司员工收入的平均数比中位数高得多?【教学说明】在同一个问题中分别求平均数、中位数和众数,这是为了比较三个量在描述一组数据集中趋势时的不同角度,从而有助于了解三个概念之间的联系与区别,体现了它们各自在日常生活中的指导意义,培养了学生的迁移能力.2.平均数、中位数和众数的应用.做一做:(1)20112012寒季北京金隅队队员身高的平均数、中位数和众数分别是多少?(2)你课前调查的20位男同学所穿运动鞋尺码的平均数、中
4、位数和众数分别是多少?你认为学校商店应多进哪种尺码的运动鞋? 【教学说明】通过这几个问题的设置,其目的就是让学生根据不同情况从不同的角度灵活运用这三个数据代表处理问题.(3)平均数、中位数和众数都是描述数据集中趋势的统计量,它们各自有哪些特征呢?【教学说明】学生讨论得出结果,进一步加深了对平均数、中位数和众数的理解,认清了它们各自存在的优劣以及如何利用这三种数据解决实际问题.三、运用新知,深化理解1.为筹备班里的新年晚会,班长以全班同学爱吃哪几种水果作民意调查,以决定买什么水果,那么他应该以调查数据的 决定.2.若数据2,x,4,8的平均数是4,则这组数据的中位数和众数是( )A.3和2B.2
5、和3C.2和2D.2和43.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数,如下表:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260件,你认为这个合理吗?为什么?【教学说明】教师引导学生独立完成,加深对平均数、中位数和众数概念的理解和检验他们掌握的程度,对于需要帮助的学生及时点拨.【答案】1.众数;2.A;3.(1)平均数=260,中位数为240,众数为240(2)合理,因为所定的件数等于平均数值.四、师生互动,课堂小结1.回顾平均数、中位数、众数的概念和各自特征.2.你是如何利用平均数、中位数、众数这三个特征数来描述一组数据的集中趋势.3.这节课你掌握了哪些知识?还有什么疑问?与同学们交流.【教学说明】通过回顾知识点加深印象.让学生总结几个概念的不同侧重点以提高他们分析问题和解决问题的能力.1.布置作业:习题6.3中的第1、2、4题.2.完成本课时练习部分.学生对于两个概念的把握上还比较清晰,但在具体的实际问题中采用哪一种数据来分析不是很明确,对于一些问题中理由的说明还不是很充分,以后的教学中要正解引导.