收藏 分销(赏)

新疆石河子市第八中学八年级数学《14.2.1 正比例函数》教案.doc

上传人:s4****5z 文档编号:7636629 上传时间:2025-01-10 格式:DOC 页数:6 大小:183.50KB
下载 相关 举报
新疆石河子市第八中学八年级数学《14.2.1 正比例函数》教案.doc_第1页
第1页 / 共6页
新疆石河子市第八中学八年级数学《14.2.1 正比例函数》教案.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
《14.2.1 正比例函数》 教学目标 (一)教学知识点 1.认识正比例函数的意义. 2.掌握正比例函数解析式特点. 3.理解正比例函数图象性质及特点. 4.能利用所学知识解决相关实际问题. (二)能力训练要求 1.经历思考、探究过程、发展总结归纳能力,能有条理地、清晰地阐述自己的观点. 2.体验数形之间联系,逐步学会利用数形结合思想分析解决有关问题. 3.体会解决问题策略的多样性,发展实践能力与创新意识. (三)情感与价值观要求 1.积极参与数学活动,对其产生好奇心和求知欲. 2.形成合作交流、独立思考的学习习惯. 教学重点 1.理解正比例函数意义及解析式特点. 2.掌握正比例函数图象的性质特点. 3.能根据要求完成转化,解决问题. 教学难点 正比例函数图象性质特点的掌握. 教学方法 探究─交流,归纳─总结. 教具准确 多媒体演示. 教学过程 Ⅰ.提出问题,创设情境 一九九六年,鸟类研究者在芬兰给一只燕鸥(候鸟)套上标志环.4个月零1周后人们在2.56万千米外的澳大利亚发现了它. 1.这只百余克重的小鸟大约平均每天飞行多少千米(精确到10千米)? 2.这只燕鸥的行程y(千米)与飞行时间x(天)之间有什么关系? 3.这只燕鸥飞行1个半月的行程大约是多少千米? 我们来共同分析: 一个月按30天计算,这只燕鸥平均每天飞行的路程不少于: 25600÷(30×4+7)≈200(km) 若设这只燕鸥每天飞行的路程为200km,那么它的行程y(千米)就是飞行时间x(天)的函数.函数解析式为: y=200x(0≤x≤127) 这只燕鸥飞行1个半月的行程,大约是x=45时函数y=200x的值.即 y=200×45=9000(km) 以上我们用y=200x对燕鸥在4个月零1周的飞行路程问题进行了刻画.尽管这只是近似的,但它可以作为反映燕鸥的行程与时间的对应规律的一个模型. 类似于y=200x这种形式的函数在现实世界中还有很多.它们都具备什么样的特征呢?我们这节课就来学习. Ⅱ.导入新课 首先我们来思考这样一些问题,看看变量之间的对应规律可用怎样的函数来表示?这些函数有什么共同特点? 1.圆的周长L随半径r的大小变化而变化. 2.铁的密度为7.8g/cm3.铁块的质量m(g)随它的体积V(cm3)的大小变化而变化. 3.每个练习本的厚度为0.5cm.一些练习本摞在一些的总厚度h(cm)随这些练习本的本数n的变化而变化. 4.冷冻一个0℃的物体,使它每分钟下降2℃.物体的温度T(℃)随冷冻时间t(分)的变化而变化. [生]1.根据圆的周长公式可得:L=2r. 2.依据密度公式p=可得:m=7.8V. 3.据题意可知: h=0.5n. 4.据题意可知:T=-2t. 我们观察这些函数关系式,不难发现这些函数都是常数与自变量乘积的形式,和y=200x的形式一样. [师]很好!正如你所说.    一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数(proportional func-tion),其中k叫做比例系数. 我们现在已经知道了正比例函数关系式的特点,那么它的图象有什么特征呢? [活动一] 活动内容设计: 画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律. 1.y=2x 2.y=-2x 活动设计意图: 通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历规律发现的整个过程,从而提高各方面能力及学习兴趣. 教师活动: 引导学生正确画图、积极探索、总结规律、准确表述. 学生活动: 利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识. 活动过程与结论: 1.函数y=2x中自变量x可以是任意实数.列表表示几组对应值: x -3 -2 -1 0 1 2 3 y -6 -4 -2 0 2 4 6 画出图象如图(1). 2.y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值: x -3 -2 -1 0 1 2 3 y 6 4 2 0 -2 -4 -6 画出图象如图(2). 3.两个图象的共同点:都是经过原点的直线. 不同点:函数y=2x的图象从左向右呈上升状态,即随着x的增大y也增大;经过第一、三象限.函数y=-2x的图象从左向右呈下降状态,即随x增大y反而减小;经过第二、四象限. 尝试练习: 在同一坐标系中,画出下列函数的图象,并对它们进行比较. 1.y=x 2.y=-x x -6 -4 -2 0 2 4 6 y=x -3 -2 -1 0 1 2 3 Y=-x 3 2 1 0 -1 -2 -3 比较两个函数图象可以看出:两个图象都是经过原点的直线.函数y=x的图象从左向右上升,经过三、一象限,即随x增大y也增大;函数y=-x的图象从左向右下降,经过二、四象限,即随x增大y反而减小. [师]就以上活动及练习的结果,大家可否总结归纳出正比例函数解析式与图象特征之间的规律呢? [生]正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.当x>0时,图象经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时,图象经过二、四象限,从左向右下降,即随x增大y反而减小. [师]很好!正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx. [活动二] 活动内容设计: 经过原点与点(1,k)的直线是哪个函数的图象?画正比例函数的图象时,怎样画最简单?为什么? 活动设计意图: 通过这一活动,让学生利用总结的正比例函数图象特征与解析式的关系,完成由图象到关系式的转化,进一步理解数形结合思想的意义,并掌握正比例函数图象的简单画法及原理. 教师活动: 引导学生从正比例函数图象特征及关系式的联系入手,寻求转化的方法.从几何意义上理解分析正比例函数图象的简单画法. 学生活动: 在教师引导启发下完成由图象特征到解析式的转化,进一步理解数形结合思想,找出正比例函数图象的简单画法,并知道原由. 活动过程及结论: 经过原点与点(1,k)的直线是函数y=kx的图象. 画正比例函数图象时,只需在原点外再确定一个点,即找出一组满足函数关系式的对应数值即可,如(1,k).因为两点可以确定一条直线. Ⅲ.随堂练习 用你认为最简单的方法画出下列函数图象: 1.y=x 2.y=-3x 解:除原点外,分别找出适合两个函数关系式的一个点来: 1.y= x (2,3) 2.y=-3x (1,-3) Ⅳ.课时小结 本节课我们通过实例了解了正比例函数解析式的形式及图象的特征,并掌握图象特征与关系式的联系规律,经过思考、尝试,知道了正比例函数不同表现形式的转化方法,及图象的简单画法,为以后学习一次函数奠定了基础. 板书设计 §14.2.1 正比例函数 一、正比例函数定义 二、正比例函数图象特征 三、正比例函数图象特征与解析式的关系规律 四、随堂练习
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服