收藏 分销(赏)

八年级数学一次函数教案(2)浙教版.doc

上传人:s4****5z 文档编号:7636038 上传时间:2025-01-10 格式:DOC 页数:3 大小:40.50KB
下载 相关 举报
八年级数学一次函数教案(2)浙教版.doc_第1页
第1页 / 共3页
八年级数学一次函数教案(2)浙教版.doc_第2页
第2页 / 共3页
八年级数学一次函数教案(2)浙教版.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、一次函数(2) 教学目标 (一)教学知识点 学会用待定系数法确定一次函数解析式毛具体感知数形结合思想在一次函数中的应用(二)能力训练目标 经历待定系数法应用过程,提高研究数学问题的技能 体验数形结合,逐步学习利用这一思想分析解决问题教学重点待定系数法确定一次函数解析式教学难点 灵活运用有关知识解决相关问题教学方法 归纳总结教具准备 多媒体演示 教学过程 提出问题,创设情境 我们前面学习了有关一次函数的一些知识,掌握了其解析式的特点及图象特征,并学会了已知解析式画出其图象的方法以及分析图象特征与解析式之间的联系规律如果反过来,告诉我们有关一次函数图象的某些特征,能否确定解析式呢?这将是我们这节课

2、要解决的主要问题,大家可有兴趣? 导入新课 有这样一个问题,大家来分析思考,寻求解决的办法 活动 活动设计内容: 已知一次函数图象过点(3,5)与(-4,-9),求这个一次函数的解析式 联系以前所学知识,你能总结归纳出一次函数解析式与一次函数图象之间的转化规律吗? 活动设计意图: 通过活动掌握待定系数法在函数中的应用,进而经历思考分析,归纳总结一次函数解析式与图象之间转化规律,增强数形结合思想在函数中重要性的理解 教师活动: 引导学生分析思考解决由图象到解析式转化的方法过程,从而总结归纳两者转化的一般方法 学生活动: 在教师指导下经过独立思考,研究讨论顺利完成转化过程概括阐述一次函数解析式与图

3、象转化的一般过程 活动过程及结论: 分析:求一次函数解析式,关键是求出k、b值因为图象经过两个点,所以这两点坐标必适合解析式由此可列出关于k、b的二元一次方程组,解之可得 设这个一次函数解析式为y=kx+b 因为y=k+b的图象过点(3,5)与(-4,-9),所以 解之,得故这个一次函数解析式为y=2x-1。结论: 像这样先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法练习: 已知一次函数y=kx+2,当x=5时y的值为4,求k值已知直线y=kx+b经过点(9,0)和点(24,20),求k、b值3. 生物学家研究表明,某种蛇的长度y (CM)是其尾

4、长x(CM)的一次函数,当蛇的尾长为6CM时, 蛇的长为45.5CM; 当蛇的尾长为14CM时, 蛇的长为105.5CM.当一条蛇的尾长为10 CM时,这条蛇的长度是多少?4.教科书第35页第6题. 解答: 当x=5时y值为4 即4=5k+2,k= 由题意可知: 解之得,作业: 教科书第35页第5,7题.备选题:1. 已知一次函数y=3x-b的图象经过点P(1,1),则该函数图象必经过点( )A.(-1,1) B.(2,2) C.(-2,2) D.(2,-2)2. 若一次函数y=2x+b的图像与坐标轴围成的三角形的面积是9,求 b的值3点M(-2,k)在直线y=2x+1上,求点M到x轴的距离d为多少?

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服