资源描述
位似
教学目标
1.了解相似图形及其有关概念,了解相似三角形的性质,掌握位似图形的性质.
2.掌握位似图形的画法,能够利用作位似图形的方法将一个图形放大或缩小.
3.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.
教学重点
位似图形的有关概念、性质与作图.
用图形的坐标的变化来表示图形的位似变换
教学难点
利用位似将一个图形放大或缩小.
把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.
教学步
骤、内容
一.创设情境
活动1 教师活动:提出问题:
生活中我们经常把自己好看的照片放大或缩小,由于没有改变图形的形状,我们得到的照片是真实的.
(教材P59页思考)观察图27.3-2图中有多边形相似吗?如果有,那么这种相似什么共同的特征?
图27.3-2
学生活动:学生通过观察了解到有一类相似图形,除具备相似的所有性质外,还有其特性,学生自己归纳出位似图形的概念:如果两个图形不仅是相似图形,而且是每组对应点连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形. 这个点叫做位似中心.这时的相似比又称为相似比.(位似中心可在形上、形外、形内.) 每对位似对应点与位似中心共线;不经过位似中心的对应线段平行.
二、利用位似,可以将一个图形放大或缩小
活动2
教师活动:提出问题:
(教材P60例题))把图1中的四边形ABCD缩小到原来.
分析:把原图形缩小到原来的,也就是使新图形上各顶点到位似中心的距离与原图形各对应顶点到位似中心的距离之比为1∶2 .
作法一:(1)在四边形ABCD外任取一点O;
(2)过点O分别作射线OA,OB,OC,OD;
(3)分别在射线OA,OB,OC,OD上取点A′、B′、C′、D′,
使得;
活动3 教师活动:提出问题:(教材P61页探究:)
(1)如图27.3-4(1),在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为位似中心,相似比为,把线段AB缩小.观察对应点之间坐标的变化,你有什么发现?
图27.3-4
(2)如图27.3-4(2),△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?
学生活动: 学生小组讨论,共同交流。
教师活动:分析:略(见教材P61的例题分析)
解:略(见教材P61的例题解答)
【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
二、应用例题(教材P62页 例)
活动4
例(教材P62的例题)
分析:略(见教材P62的例题分析)
解:略(见教材P62的例题解答)
问:你还可以得到其他图形吗?请你自己试一试!
解法二:点A的对应点A′′的坐标为(-6×,6×),即A′′(3,-3).类似地,可以确定其他顶点的坐标.(具体解法与作图略)
三、课堂练习
活动5 教材P62页.1、2
四、在前面几册教科书中,我们学习了在平面直角坐标系中,如何用坐标表示某些平移、轴对称、旋转(中心对称)等变换,相似也是一种图形的变换,一些特殊的相似(如位似)也可以用图形坐标的变化来表示.
活动6
1.如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),(1)将△ABC向左平移三个单位得到△A1B1C1,写出A1、B1、C1三点的坐标;
(2)写出△ABC关于x轴对称的△A2B2C2三个顶点A2、B2、C2的坐标;
(3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3、B3、C3三点的坐标.
(3)将△ABC绕点O旋转180°得到△A3B3C3,写出A3、B3、C3三点的坐标.
27.3-6
2.(教材P63)图27.3-6所示的图案中,你能找出平移、轴对称、旋转和位似这些变换吗?
小结;
作业设计
教材P60页.1、2
教材P64页.2、3
展开阅读全文