收藏 分销(赏)

辽宁省丹东七中中考数学复习《3.4二次函数(一)》教案 北师大版.doc

上传人:s4****5z 文档编号:7632684 上传时间:2025-01-10 格式:DOC 页数:6 大小:285KB
下载 相关 举报
辽宁省丹东七中中考数学复习《3.4二次函数(一)》教案 北师大版.doc_第1页
第1页 / 共6页
辽宁省丹东七中中考数学复习《3.4二次函数(一)》教案 北师大版.doc_第2页
第2页 / 共6页
辽宁省丹东七中中考数学复习《3.4二次函数(一)》教案 北师大版.doc_第3页
第3页 / 共6页
辽宁省丹东七中中考数学复习《3.4二次函数(一)》教案 北师大版.doc_第4页
第4页 / 共6页
辽宁省丹东七中中考数学复习《3.4二次函数(一)》教案 北师大版.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、章节第三章课题辽宁省丹东七中中考数学复习3.4二次函数(一)教案 北师大版课型复习课教法讲练结合教学目标(知识、能力、教育)1.理解二次函数的概念;掌握二次函数的图像和性质以及抛物线的平移规律;2.会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3.会用待定系数法求二次函数的解析式; 4. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值教学重点二次函数的概念、图像和性质;二次函数解析式的确定。教学难点二次函数的图像与系数的关系以及抛物线的平移规律;教学媒体学案教学过程一:【课前预习】(一):【

2、知识梳理】 1二次函数的定义:形如( )的函数为二次函数2二次函数的图象及性质: (1)二次函数的图象是一条 顶点为,对称轴;当a0时,抛物线开口向 ,图象有 ,且,y随x的增大而 ,y随x的增大而 ;当a0时,抛物线开口向 ,图象有 ,且,y随x的增大而 ,y随x的增大而 (3)当a0时,当x=时,函数 为;当a0时,当x= 时,函数 为3. 二次函数表达式的求法:(1)若已知抛物线上三点坐标,可利用待定系数法求得;(2)若已知抛物线的顶点坐标或对称轴方程,则可采用顶点式: 其中顶点为(h,k)对称轴为直线x=h;(3)若已知抛物线与x轴的交点坐标或交点的横坐标,则可采用两根式:,其中与x轴

3、的交点坐标为(x1,0),(x2,0)(二):【课前练习】 1. 下列函数中,不是二次函数的是( ) A.;B.;C.; D. 2. 函数的图象是(3,2)为顶点的抛物线,则这个函数的解析式是( ) A.;B.;C.;D.3. 二次函数y=16x3x2 的顶点坐标和对称轴分别是( ) A顶点(1,4), 对称轴 x=1;B顶点(1,4),对称轴x=1 C顶点(1,4), 对称轴x=4;D顶点(1,4),对称轴x=44.把二次函数化成的形式为 ,图象的开口向 ,对称轴是 ,顶点坐标是 ;当 时 随着的增大而减小,当 时,随着的增大而增大;当= 时 函数有 值,其 值是 ;若将该函数经过 的平移可

4、以得到函数的图象。5. 直线与抛物线的交点坐标为 。二:【经典考题剖析】 1.下列函数中,哪些是二次函数? 2. 已知抛物线过三点(1,1)、(0,2)、(1,l) (1)求这条抛物线所对应的二次函数的表达式;(2)写出它的开口方向、对称轴和顶点坐标;(3)这个函数有最大值还是最小值? 这个值是多少?3. 当 x=4时,函数的最小值为8,抛物线过点(6,0)求:(1)函数的表达式;(2)顶点坐标和对称轴;(3)画出函数图象(4)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小4.已知二次函数的图象如图所示,试判断的符号5. 已知抛物线y=x2+(2n-1)x+n2-1 (n为常

5、数).(1)当该抛物线经过坐标原点,并且顶点在第四象限时,求出它所对应的函数关系式;(2)设A是(1)所确定的抛物线上位于x轴下方、且在对称轴左侧的一个动点,过A作x轴的平行线,交抛物线于另一点D,再作ABx轴于B,DCx轴于C.当BC=1时,求矩形ABCD的周长;试问矩形ABCD的周长是否存在最大值?如果存在,请求出这个最大值,并指出此时A点的坐标;如果不存在,请说明理由.解:(1)由已知条件,得n2-1=0解这个方程,得n1=1, n2=-1当n=1时,得y=x2+x, 此抛物线的顶点不在第四象限.当n=-1时,得y=x2-3x, 此抛物线的顶点在第四象限.所求的函数关系为y=x2-3x.

6、 (2)由y=x2-3x,令y=0, 得x2-3x=0,解得x1=0,x2=3抛物线与x轴的另一个交点为(3,0)它的顶点为(,), 对称轴为直线x=, 其大致位置如图所示,BC=1,由抛物线和矩形的对称性易知OB=(3-1)=1.B(1,0)点A的横坐标x=1, 又点A在抛物线y=x2-3x上,点A的纵坐标y=12-31=-2.AB=|y|=|-2|=2.矩形ABCD的周长为:2(AB+BC)=2(2+1)=6.点A在抛物线y=x2-3x上,故可设A点的坐标为(x,x2-3x),B点的坐标为(x,0). (0x), BC=3-2x, A在x轴下方,x2-3x0,AB=|x2-3x|=3x-x

7、2 矩形ABCD的周长P=2(3x-x2)+(3-2x)=-2(x-)2+a=-20,当x=时,矩形ABCD的周长P最大值为. 此时点A的坐标为A(,). 三:【课后训练】 1. 把抛物线y=(x2)21经平移得到( )A向右平移2个单位,向上平移1个单位;B向右平移2个单位,向下平移1个单位 C向左平移2个单位,向上平移1个单位;D向左平移2个单位,向下平移1个单位2. 某公司的生产利润原来是a元,经过连续两年的增长达到了y万元,如果每年增长的百分数都是x,那么y与x的函数关系是( ) Ay=x2+a; By= a(x1)2; Cy=a(1x)2; Dya(l+x)23. 设直线 y=2x3

8、,抛物线 y=x22x,点P(1,1),那么点P(1,1)( ) A在直线上,但不在抛物线上; B在抛物线上,但不在直线上 C既在直线上,又在抛物线上; D既不在直线上,又不在抛物线上4. 二次函数 y=2(x3)2+5的图象的开口方向、对称轴和顶点坐标分别为( ) A开口向下,对称轴x=3,顶点坐标为(3,5) B开口向下,对称轴x3,顶点坐标为(3,5) C开口向上,对称轴x=3,顶点坐标为(3,5) D开口向上,对称轴x=3,顶点坐标为(3,5)5.已知 y(a3)x2+2xl是二次函数;当a_时,它的图象是开口向上的抛物线,抛物线与y轴的交点坐标 6.抛物线如图所示,则它关于y轴对称的

9、抛物线的解析式是 7.已知抛物线的对称轴为直线x=2,且经过点(l,1),(4,0)两点(1)求这条抛物线所对应的二次函数的表达式;(2)写出它的开口方向、对称轴和顶点坐标;(3)这个函数有最大值还是最小值? 这个值是多少?8.已知抛物线与 x轴交于点(1,0)和(2,0)且过点 (3,4),(1)求抛物线的解析式(2)顶点坐标和对称轴;(3)画出函数图象(4)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小9.已知函数(1)用配方法将解析式化成顶点式。(2)写出它的开口方向、对称轴和顶点坐标;(3)x取什么值时,y随x的增大而增大;x取什么值时,y随x增大而减小(4)求出函数图象与坐标轴的交点坐标10.阅读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标也将发生变化 例如:由抛物线,有y=,所以抛物线的顶点坐标为(m,2m1),即当m的值变化时,x、y的值随之变化,因而y值也随x值的变化而变化,将代人,得y=2x1可见,不论m取任何实数,抛物线顶点的纵坐标y和横坐标x都满足关系式y=2x1,回答问题:(1)在上述过程中,由到所用的数学方法是_,其中运用了_公式,由得到所用的数学方法是_;(2)根据阅读材料提供的方法,确定抛物线顶点的纵坐标y与横坐标x之间的关系式 .四:【课后小结】布置作业地纲教后记

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服