收藏 分销(赏)

八年级数学上册 第12章 整式的乘除12.2 整式的乘法 3多项式与多项式相乘教案 (新版)华东师大版-(新版)华东师大版初中八年级上册数学教案.doc

上传人:s4****5z 文档编号:7631391 上传时间:2025-01-10 格式:DOC 页数:3 大小:55.50KB
下载 相关 举报
八年级数学上册 第12章 整式的乘除12.2 整式的乘法 3多项式与多项式相乘教案 (新版)华东师大版-(新版)华东师大版初中八年级上册数学教案.doc_第1页
第1页 / 共3页
八年级数学上册 第12章 整式的乘除12.2 整式的乘法 3多项式与多项式相乘教案 (新版)华东师大版-(新版)华东师大版初中八年级上册数学教案.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述
3.多项式与多项式相乘 【基本目标】 1.能说出多项式与多项式相乘的法则,并且知道多项式乘以多项式的结果仍然是多项式.会进行多项式乘以多项式的计算及混合运算. 2.培养学生灵活运用所学知识分析问题、解决问题的能力. 3.培养独立思考、主动探索的习惯和初步解决问题的愿望及能力. 【教学重点】 掌握多项式乘以多项式的法则. 【教学难点】 运用法则进行混合运算时,不要漏项. 一、复习旧知,导入新课 指名学生说出单项式与多项式相乘的法则.(单项式乘以多项式就是用单项式乘以多项式中的每一项,再把所得的的积相加.) 式子p(a+b)=pa+pb中的p,可以是单项式,也可以是多项式.如果p=m+n,那么p(a+b)就成了(m+n)(a+b),这就是今天我们所要讲的多项式与多项式相乘的问题.(由此引出课题) 你会计算这个式子吗?你是怎样计算的? 二、师生互动,探究新知 【教师活动】(教师引导学生由繁化简,把(m+n)看作一个整体,使之转化为单项式乘以多项式,即:[(m+n)(a+b)]=(m+n)a+(m+n)b=ma+mb+na+nb. 【教师活动】教材P28例图你会验证吗? 【教师活动】问题:(1)如何表示扩大后的林区的面积? (2)用不同的方法表示出来后的等式为什么是相等的呢? 【学生活动】学生分组讨论,相互交流得出答案. 【教师活动】观察这一结果的每一项与原来两个多项式各项之间的关系,能不能由原来的多项式各项之间相乘直接得到?如果能得到,又是怎样相乘得到的?(教师示范) 1.你能用语言叙述这个式子吗? 多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加. 即:(m+n)(a+b)=ma+mb+na+nb. 2.两个多项式相乘,不先计算能知道结果中(合并同类项前)有几项吗? 3.在计算中怎样才能不重不漏? 这个法则,对于三个或三个以上的多项式相乘,是否适用?若适用,应怎样计算? 【学生活动】学生小组讨论、交流、发言汇报. 三、随堂练习,巩固新知 完成练习册中本课时对应的课后作业部分,教师巡视,并及时反馈,特别是漏乘现象. 四、典例精析,拓展新知 例甲、乙二人共同计算一道整式乘法:(2x+a)·(3x+b),由于甲抄错了第一个多项式中a的符号,得到的结果为6x2+11x-10;由于乙漏抄了第二个多项式中x的系数,得到的结果为2x2-9x+10. (1)你能知道式子中a、b的值各是多少吗? (2)请你计算出这道整式乘法的正确结果. 【分析】甲抄错了a的符号,即甲的计算式为(2x-a)(3x+b)=6x2-(3a-2b)x-ab.对比得到的结果可得-(3a-2b)=11;乙漏抄了第二个多项式中x的系数,即乙的计算式为(2x+a)(x+b)=2x2+(a+2b)x+ab.对比得到的结果可得出a,b的值. 解:(1)(2x-a)(3x+b)=6x2-(3a-2b)x-ab=6x2+11x-10. (2)(2x+a)(x+b)=2x2+(a+2b)x+ab=2x2-9x+10. ∴-(3a-2b)=11, a+2b=-9,解得a=-5, b=-2. (2)原式=(2x-5)(3x-2)=6x2-19x+10. 五、运用新知,深化理解 若多项式(x2+mx+n)(x2-3x+4)展开后不含x3项和x2项,试求m、n的值. 解:原式=x4+mx3+nx2-3x3-3mx2-3nx+4x2+4mx+4n=x4+(m-3)x3+(n-3m+4)x2+(4m-3n)x+4n,由题意得: m-3=0,且n-3m+4=0 ∴m=3,n=5. 【教学说明】教师提示各项系数对应,即待定系数法. 六、师生互动,课堂小结 这节课你学到了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结. 完成练习册中本课时对应的课后作业部分. 本节课推导多项式乘多项式法则时,从单项式乘多项式法则入手,用换元思想直接推导,思维有根基,为防止本节课中最大错误——漏乘现象,教师设置了一个探究关于多项式相乘后(没合并同类项前)的项数问题,很好的避免了这个错误.典例精析中的待定系数法初次接触,注意对学习困难的学生进行及时指导.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服