1、241.2垂直于弦的直径理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解重点垂径定理及其运用难点探索并证明垂径定理及利用垂径定理解决一些实际问题一、复习引入在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆固定的端点O叫做圆心,线段OA叫做半径以点O为圆心的圆,记作“O”,读作“圆O”连接圆上任意两点的线段叫做弦,如图线段AC,AB;经过圆心的弦叫做直径,如图线段AB;圆上任意两点间的部分叫做圆弧,简称弧,以A,C为端点的弧记作“”,读作“圆弧AC”或“弧AC”大于半圆的弧(如图所示)叫做优弧,
2、小于半圆的弧(如图所示或)叫做劣弧圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆圆是轴对称图形,其对称轴是任意一条过圆心的直线二、探索新知(学生活动)请同学按要求完成下题:如图,AB是O的一条弦,作直径CD,使CDAB,垂足为M.(1)如图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有哪些等量关系?说一说你理由(老师点评)(1)是轴对称图形,其对称轴是CD.(2)AMBM,即直径CD平分弦AB,并且平分及.这样,我们就得到下面的定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧下面我们用逻辑思维给它证明一下:已知:直径CD、弦AB,且CDAB垂足为M.求证:AMBM
3、,.分析:要证AMBM,只要证AM,BM构成的两个三角形全等因此,只要连接OA,OB或AC,BC即可证明:如图,连接OA,OB,则OAOB,在RtOAM和RtOBM中,RtOAMRtOBM,AMBM,点A和点B关于CD对称,O关于直径CD对称,当圆沿着直线CD对折时,点A与点B重合,与重合,与重合,.进一步,我们还可以得到结论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(本题的证明作为课后练习)例1有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB60 m,水面到拱顶距离CD18 m,当洪水泛滥时,水面宽MN32 m时是否需要采取紧急措施?请说明理由分析:要求当洪水到来时,水面宽MN32 m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.解:不需要采取紧急措施,设OAR,在RtAOC中,AC30,CD18,R2302(R18)2,R2900R236R324,解得R34(m),连接OM,设DEx,在RtMOE中,ME16,342162(34x)2,16234268xx2342,x268x2560,解得x14,x264(不合题意,舍去),DE4,不需采取紧急措施三、课堂小结(学生归纳,老师点评)垂径定理及其推论以及它们的应用四、作业布置1垂径定理推论的证明2教材第89,90页习题第8,9,10题