资源描述
平行四边形
课题
平行四边形复习课
授课时间
课型
复习
二次修改意见
课时
1
授课人
科目
数学
主备
教学目标
知识与技能
经历平行四边形基本性质,常见判定方法的复习交流过程,使学生学会“合乎逻辑地思考”,建立知识体系,获得一定的技能基础.
过程与方法
让学生理解平面几何观念的基本途径是多种多样的,感知和体验几何图形的现实意义,体验二维空间相互转换关系.
情感态度价值观
通过正方形与平行四边形、矩形、菱形的联系的教学对学 生进行辩证唯物主义教育,提高学生的逻辑思维能力
教材分析
重难点
重点:理解和掌握几种常见特殊四边形的性质、判定..
难点:发展合情推理和初步的演绎推理能力.
教学设想
教法
三主互位导学法
学法
小组合作学习法
教具
幻灯片
课堂设计
目标展示
经历平行四边形基本性质,常见判定方法的复习交流过程,学会“合乎逻辑地思考”,建立知识体系,获得一定的技能基础
预习检测
1、平行四边形与各种特殊平行四边形的区别。
2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。
A
B
C
D
E
A
D
C
B
第2题图
质疑探究
1.如图,在□ABCD中,已知AD=8㎝, AB=6㎝, DE平分∠ADC交BC边于点E,则BE等于( )
A.2cm B.4cm C.6cm D.8cm
2.如图,□ABCD中,AC.BD为对角线,BC=6,BC边上的高为4,则阴影部分的面积为( ).
A.3 B.6 C.12 D.24
精讲点拨
如图,是四边形的对角线上两点,. 求证:(1) .
(2)四边形是平行四边形.
当堂检测
1、 □ABCD中, AB:BC=1:2,周长为24cm, 则AB=_____cm,
2、 如图.矩形ABCD的对角线相交于点0.DE∥AC,
CE∥BD.求证:四边形OCED是菱形;
作业布置
板
书
设
计
. 平行四边形复习课
平行四边形与各种特殊平行四边形的区别
教
学
反
思
展开阅读全文