1、2.2 从古老的代数书说起 一元一次方程的讨论(1)教案【教学目标】1.经历运用方程解决实际问题的过程;2.学习如何找出实际问题中的已知数和未知数,并分析它们之间的数量关系,列出方程;3.通过具体的例子感受一些常用的相等关系式.【对话探索设计】探索1(1)某校前年购买计算机x台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 去年购买的计算机的数量是_;今年购买的计算机的数量是_;三年总共购买的数量是_.(2)某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍, 前年这个学校购买了多少台计算机?解:设前年购买计算机x台,那么,设计(1)是让学生感
2、受列代数式是列方程的基础.去年购买的计算机的数量是_;今年购买的计算机的数量是_;根据关系:三年共购买计算机140台(关系式: 前年购买量+去年购买量+今年购买量=140台),列得方程:_.合并得_.系数化为1得_.答:_.归纳:总量等于各部分量的和是一个基本的相等关系.探索2(1)把一些书分给某班学生阅读,如果每人分3本,则剩余20本,若这个班级有x名学生,则这些书有_本.(2) 把一些书分给某班学生阅读,如果每人分4本,则还缺20本,若这个班级有x名学生,则这些书有_本.(3) 把一些书分给某班学生阅读,如果每人分3本,则剩余20本; 如果每人分4本,则还缺20本.这个班有多少学生?解:
3、设这个班级有x名学生,根据第一关系,这批书共_本;根据第二关系,这批书共_本;这批书的总数是个定值,表示它的两个不同的式子应该相等.熟悉这些关系有助于列方程.根据这一相等关系列得方程:_.想一想,怎样解这个方程?归纳:表示同一个量的两个不同的式子相等,这也是我们列方程经常用到的相等关系.练习1.(1)同样大的实验田,喷灌的用水量是漫灌的25%,若漫灌要用水x吨,则改用喷灌只需_吨.(2)灌溉两块同样大的实验田,第一块用喷灌的方式,第二块用漫灌的方式, 喷灌的用水量是漫灌的25%,若两块地共用水300吨.每块地各用水多少吨?解:设第二块地(漫灌)用水x吨,根据关系: 喷灌的用水量是漫灌的25%(关系式是:喷灌的用水量=漫灌的的用水量25%),得第一块地(喷灌)用水_吨.根据关系: 两块地共用水300吨,可列方程:_.解得_.答:_.作业P79.练习,P84.1,6补充作业1.按要求列出方程:(1)x的1.2倍等于36; (2)y的四分之一比y的2倍大24.2.某厂去年的产量是前年的2倍还多150吨,若去年的产量是950吨,求前年的产量.解:设前年的产量是x吨,根据关系: 去年的产量是前年的2倍还多150吨,得去年的产量为_,根据去年的产量是950吨列方程:_ .解得_.答_.