1、2.3 从“买布问题”说起 一元一次方程的讨论(2)教案(四)【教学目标】1.熟练掌握一元一次方程的解法;2.进一步感受列方程的一般思路;3.进一步培养学生的建模能力及创新能力.4.通过观察、实践、讨论等活动经历从实际中抽象数学模型的过程.【对话探索设计】探索1一项工程,甲要做12天才能做完.如果把总工作量看作1,那么,根据工作效率=_,得甲一天的工作量(工作效率)为_.他做3天的工作量是_.探索2一项工程,甲单独做要6天,乙单独做要3天,两人合做要几天?(1)你能估算出答案吗?(2)试一试,怎样用直线型示意图寻求答案:如图,线段AB表示总工作量1,怎样在线段AB上分别表示甲、乙一天的工作量?
2、通过示意图,能够很直观地看出答案吗?如图,用整个圆的面积表示全部工作量1,怎样用扇形的面积分别表示甲、乙两人一天的工作量? 通过示意图,能够很直观地看出答案吗?与直线型示意图相比,你更乐意用哪一种图形分析?探索3一项工程,甲单独做要12天,乙单独做要18天,两人合做要几天?解:把总工作量看作1,那么,根据工作效率=_,得甲一天的工作量(工作效率)为_;乙一天的工作量为_;设两人合做要x天,那么,甲的总工作量为_;乙的总工作量为_;这工作由两个人完成,根据两人完成的工作量之和等于1,可列方程:_.解这个方程得_.答:_.把这道题的解法与小学时的算术解法进行比较,你有什么发现?探索4整理一批图书,
3、由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作? (P92例5) 解:把总工作量看作1,那么,根据工作效率=_,得人均效率(一个人1小时的工作量)为_.设先安排x人工作4小时, 那么,这x个人4小时的工作量为_(可化简为_).显然,再增加2人后,参加工作的人数为x+2,这(x+2)个人工作8小时的工作量为_(可化简为_).这工作分两段完成,根据两段完成的工作量等于1可列方程:_.解得_.答:_.想一想:如果不是把总工作量看作是1,而是把一个人一小时的工作量看作是1,该如何解这道题?比较两种解法,你有什么感受?教师本身要认真备课,要敢于质疑,要不失时机地培养学生独立思考的习惯.作业P93.习题3(3),(4);P94,8,9