1、辽宁省辽阳市第九中学七年级数学同底数幂的除法教案(1) 新人教版一、 学生起点分析依据新课标制定教学重点:同底数幂除法法则的探索和应用,理解零指数和负整数指数幂的意义,将运算法则拓广到整数指数幂的范围依据新课标制定教学难点:理解零指数幂和负整数指数幂的意义二、 教学任务分析1教学目标:会进行同底数幂的除法运算,并能解决一些实际问题,了解零指数幂和负整数指数幂的意义,能进行零指数幂和负整数指数幂的乘除法运算.2知识目标:经历探索同底数幂除法运算性质的过程,进一步体会幂的意义,经历观察、归纳、猜想、解释等数学活动,体验解决问题方法的多样性,发展学生的合情推理和演绎推理能力以及有条理的表达能力.3能
2、力目标:在解决问题的过程中了解数学的价值,体会数学的抽象性、严谨性和广泛性.三、 教学过程设计本课时设计了七个教学环节:复习回顾、情境引入、归纳法则、探索拓广、反馈延伸、课堂小结、布置作业.第一环节复习回顾活动内容:前面我们学习了哪些幂的运算? 在探索法则的过程中我们用到了哪些方法? (1)同底数幂相乘,底数不变,指数相加. (m,n是正整数)(2)幂的乘方,底数不变,指数相乘.(m,n是正整数)(3)积的乘方等于积中各因数乘方的积. (n是正整数)活动目的:学习同底数幂的除法要借助前面三种幂的运算的活动经验和知识基础,因此这个环节的目的是回顾前面的知识和方法,为下面自主探索、归纳法则做好铺垫
3、. 活动的注意事项:教学时可以让学生自己写出三种幂的运算法则的叙述和字母表示,要注意引导学生回顾三种法则探索过程中用到的归纳思想和数学的推理方法,只要他们用自己的语言描述清楚即可,如学生可能会回答“由具体的例子的计算(特殊)得到法则的符号表示(一般)”,“用幂的意义说明了法则的正确性”等等.第二环节情境引入活动内容:一种液体每升含有 1012 个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀虫剂可以杀死 109 个此种细菌,(1) 要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?(2) 你是怎样计算的?(3) 你能再举几个类似的算式吗?活动目的:用实际背景来引入同底
4、数幂的除法,让学生体会数学与现实生活的紧密联系,而这个问题学生运用有理数知识就能解决,为下面类比解决“式”的问题提供思路,第(3)问的目的是帮助学生抓住“同底数幂”“相除”这些本质特征,同时也为进一步的探索提供素材.活动的注意事项:解决问题(1)学生可能根据题意列出算式,也有可能列出,应让学生认识到两种形式的实质是一样的.问题(2)用到的是有理数的运算,教学时应鼓励学生独立思考,在黑板上呈现不同的计算过程,并说明每一步的算理,学生可能出现不同的解决方法:可能先将幂还原成大数再用分数的约分来计算:(滴);也可能先逆用同底数幂的乘法再进行约分来计算:(滴)问题(3)应尽可能多的在黑板上呈现学生举的
5、算式,在教学时可以通过追问“这些算式举的对不对?”帮助学生抓住特征:同底数幂、除法.还可以再追问“这些算式应该叫做什么运算呢?”引入这节课的研究对象:同底数幂的除法运算.第三环节归纳法则活动内容:1.计算你列出的算式(选作)2.计算下列各式,并说明理由(mn) 3.你能用字母表示同底数幂的除法运算法则并说明理由吗?活动目的:让学生从有理数的运算出发,由特殊逐渐过渡到一般,得到同底数幂的运算法则:(a0,m,n是正整数,且mn),再运用幂的意义加以说明.在此过程中,发展学生类比、归纳、符号演算、推理能力和有条理的表达能力.活动的注意事项:这里的教学方式可以根据上一环节学生的举例情况灵活处理:方式
6、一,如果学生列出的算式比较全面:既有只含有理数的算式,又有既含字母又含数的算式(如类似于活动2的指数为字母或是底数为字母的),还有只含字母的算式(类似于法则的),那么教学时可以先引导学生将所列举的算式进行分类,再按照由“数”到“混合”再到“字母”的顺序分三个层次进行探索,让学生自己完成由特殊过渡到一般的过程,这样就不用再进行活动2和3.方式二:如果学生列出的算式不够全面,就可以先将活动2的内容补充进来,再让学生观察运算前后指数和底数发生了怎样的变化,从特例中归纳出同底数幂除法的运算性质:,培养学生的合情推理能力.最后进行活动3,在运用符号运算的过程中培养学生的演绎推理能力.有了前面探索法则的经
7、验基础,类比有理数的计算过程学生不难得出,但学生可能会忽视“a0,m,n是正整数,且mn”的要求,教学时可以追问“a都可以取哪些值呢?”来引导学生类比有理数的除法中对除数不为0的要求来理解这里的a0,再借助上面的计算约分时出现m-n个a的过程得到mn.而当m=n和mn)当m=n时,我们可以类似的得到1,(,m,n为正整数);当mn时,先设p= n -m,那么m-n=-p,也可以类似的得到,(,p为正整数).方法二,从乘除法的逆运算关系来说明:因为所以在这一结论的基础上再进一步得到因为所以(,p为正整数)(二)拓广活动内容:1. 例2 计算:用小数或分数分别表示下列各数:2. 议一议:计算下列各
8、式,你有什么发现?与同伴交流3. 当指数拓广到零和负整数范围后,我们前面学过的同底数幂的乘法、幂的乘方与积的乘方的运算法则是否也成立呢?活动目的:活动1目的是巩固学生对零指数幂和负整数指数幂意义的理解,活动2、3将所有幂的运算法则都拓广到整数指数幂的范围,可以帮助学生形成完整的知识体系.活动注意事项:活动1主要是为了考察学生对有理数的零指数幂和负整数指数幂意义的理解,教学中应关注学生在计算中出现的问题,及时了解学生存在的困惑.活动2应注意引导学生在计算和交流的基础上,从“数”过渡到“式”,从而得到一般的结论:只要m、n是整数,前面探索的同底数幂的除法法则就成立. 在将同底数幂的除法法则拓广到零
9、指数幂和负整数指数幂范围后,学生自然会产生疑问:前面的几种幂的运算是否也成立呢?因此,活动3是活动2的自然延伸,这里可以让学生类比活动2自主解决,教师应关注学生是否能独立完成“举特例观察、归纳一般结论”的过程.如果时间较紧,可以让学生组内分工对三种运算分别进行探索.第五环节反馈延伸活动内容:反馈练习:1.下面的计算是否正确?如有错误请改正: 2.计算 拓展延伸:(1) (2)(38)(3)4活动目的:运算能力的形成不是一蹴而就的,它的发展是从简单到复杂,从低级到高级,从具体到抽象,有层次地进行的,因此这里设计了由易到难的两组练习题,对本节课所学的知识进行巩固和拓展,发展学生的运算能力.活动的注
10、意事项:反馈练习中学生可能在2计算第(4)小题中出现问题,这里应先转化为同底数幂,再相除,这道题也为拓展延伸做了铺垫.拓展延伸应注意(1)中与不是同底数幂,计算时应先化成同底,学生既可以把化成;也可以把化成,教学时应让学生充分交流、展示各自的作法,从而对于算理有更为清楚的认识.第六环节课堂小结活动内容:1. 这节课你学到了哪些知识?2. 现在你一共学习了哪几种幂的运算?它们有什么联系与区别?谈谈你的理解3. 我们在探索运算法则的过程中用到了哪些方法?活动目的:本节课是幂的运算中最后一节,因此这里不仅回顾了本节课所学的内容,还将这四种幂的运算进行了对比,对探索过程中的类比、归纳等数学方法进行回顾.这样设计的目的是加深学生对四种幂的运算的理解,更好地形成知识体系,帮助学生体会解决问题的思路与方法的共性.活动的注意事项:鼓励学生畅谈自己学习体会,激发学生对数学的学习兴趣与信心,还可以根据学情适当引导学生体会幂的运算法则的特点:运算中的底数不变,只对指数做运算,且指数的运算比幂的运算低一级法则中的底数和指数具有普遍性,既可以是数,也可以是式幂的运算中指数都是整数.第七环节布置作业1完成课本习题1.4四、教学设计反思: