1、2.1、数怎么又不够用了(二)教学目标:(一)教学知识点1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.2.会判断一个数是有理数还是无理数.(二)能力训练要求1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.(三)情感与价值观要求1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.教学重点:1.无理数概念的探索过程
2、.2.用计算器进行无理数的估算.3.了解无理数与有理数的区别,并能正确地进行判断.教学难点:1.无理数概念的建立及估算.2.用所学定义正确判断所给数的属性.教学过程:.创设问题情境,引入新课师同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.讲授新课1.导入师请看图大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.生因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.师大家能不能判断一下面积为2的正方形的边长a的大致范
3、围呢?生因为a2大于1且a2小于4,所以a大致为1点几.师很好.a肯定比1大而比2小,可以表示为1a2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4a1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.请一位同学把自己的探索过程整理一下,用表格的形式反映出来.生我的探索过程如下.边长a面积S1a21S41.4a1.51.96S2.251.41a1.421.9881S2
4、.01641.414a1.4151.999396S2.0022251.4142a1.41431.99996164S2.00024449师还可以继续下去吗?生可以.师请大家继续探索,并判断a是有限小数吗?生a=1.41421356,还可以再继续进行,且a是一个无限不循环小数.师请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)生b=2.236067978,还可以再继续进行,b也是一个无限不循环小数.2.无理数的定义请大家把下列各数表示成小数.3,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个
5、小组计算一个数,这样可以节省时间.生3=3.0,=0.8,=,生3,是有限小数,是无限循环小数.师上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.像上面研究过的a2=2,b2=5中的a,b是无限不循环小数.无限不循环小数叫无理数(irrational number).除上面的a,b外,圆周率=3.14159265也是一个无限不循环小数,0.5858858885(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.3.有理数与无理数的主要区别(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.(2)任
6、何一个有理数都可以化为分数的形式,而无理数则不能.4.例题讲解下列各数中,哪些是有理数?哪些是无理数?3.14,0.1010010001(相邻两个1之间0的个数逐次加1).课堂练习(一)随堂练习下列各数中,哪些是有理数?哪些是无理数?0.4583,18. (二)补充练习:、判断题(1)有理数与无理数的差都是有理数.(2)无限小数都是无理数.(3)无理数都是无限小数.(4)两个无理数的和不一定是无理数.、下列各数中,哪些是有理数?哪些是无理数?0.351,3.14159,5.2323332,123456789101112(由相继的正整数组成).在下列每一个圈里,至少填入三个适当的数.课时小结本节
7、课我们学习了以下内容.1.用计算器进行无理数的估算.2.无理数的定义.3.判断一个数是无理数或有理数.课后作业1.P30习题2.2.探究与活动设面积为5的圆的半径为a.(1)a是有理数吗?说说你的理由.(2)估计a的值(精确到十分位,并利用计算器验证你的估计).(3)如果精确到百分位呢?解:a2=5a2=5(1)a不是有理数,因为a既不是整数,也不是分数,而是无限不循环小数.(2)估计a2.2.(3)a2.24.板书设计:1、数怎么又不够用了(二)一、导入二、新课1.无理数的定义2.举例三、练习四、补充练习五、课时小节六、课后作业教学反思:这节内容是无理数的概念以及实数的分类。是数的范围的又一次扩充。是很重要的一节。培养学生的分类归纳的思想。但对概念的理解掌握一些同学还是不很好。只能在以后的教学过程中不断的加深。