收藏 分销(赏)

黑龙江省虎林市八五零农场学校七年级数学下册 7.3.2多边形的内角和教案 人教新课标版.doc

上传人:s4****5z 文档编号:7627158 上传时间:2025-01-10 格式:DOC 页数:7 大小:137KB 下载积分:10 金币
下载 相关 举报
黑龙江省虎林市八五零农场学校七年级数学下册 7.3.2多边形的内角和教案 人教新课标版.doc_第1页
第1页 / 共7页
黑龙江省虎林市八五零农场学校七年级数学下册 7.3.2多边形的内角和教案 人教新课标版.doc_第2页
第2页 / 共7页


点击查看更多>>
资源描述
7.3.2 多边形的内角和 [教学目标] 1.使学生了解多边形的内角、外角等概念. 2.能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算. [教学重点、难点] 1.重点: (1)多边形的内角和公式. (2)多边形的外角和公式. 2.难点:多边形的内角和定理的推导. [教学过程] 一、探究 1.我们知道三角形的内角和为180°. 2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°. 3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢? 画一个任意的四边形,用量角器量出它的四个内角,计算它们的和,与同伴交流你的结果. 从中你得到什么结论? 同学们进行量一量,算一算及交流后老师加以归纳得到四边形的内角和为360°的感性认识,是否成为定理要进行推导. 二、思考几个问题 1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度? 2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度? 3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度? 综上所述,你能得到多边形内角和公式吗? 设多边形的边数为n,则 n边形的内角和等于(n一2)·180°. 想一想:要得到多边形的内角和必需通过“三角形的内角和定理”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗? 由同学动手并推导在与同伴交流后,老师归纳:(以五边形为例) 分法一:在五边形ABCDE内任取一点O,连结OA、OB、OC、OD、OE,则得五个三角形.其五个三角形内角和为5×180°,而∠1,∠2,∠3,∠4,∠5不是五边形的内角应减去,∴五边形的内角和为5×180°一2×180°=(5—2)×180°=540°. 如果五边形变成n边形,用同样方法也可以得到n个三角形的内角和减去一个周角,即可得:n边形内角和=n×l80°一2×180°=(n一2)×180°. 分法二:在边AB上取一点O,连OE、OD、OC,则可以(5-1)个三角形,而∠1、∠2、∠3、∠4不是五边形的内角,应舍去. ∴五边形的内角和为(5—1)×180°一180°=(5—2)×180° 用同样的办法,也可以把n边形分成(n一1)个三角形,把不是n边形内角的∠AOB舍去,即可得n边形的内角和为(n一2)×180°. 三、例题 例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系? 已知:四边形ABCD的∠A+∠C=180°.求:∠B与∠D的关系. 分析:本题要求∠B与∠D的关系,由于已知∠A+∠C=180°,所以可以从四边形的内角和入手,就可得到完满的答案. 解:如图,四边形ABCD中,∠A+∠C=180°。 ∵∠A+∠B+∠C+∠D=(4-2)×360°=180°, ∴∠B+∠D= 360°-(∠A+∠C)=180° 这就是说:如果四边形一组对角互补,那么另一组对角也互补. 例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少? 已知:∠1,∠2,∠3,∠4,∠5,∠6分别为六边形ABCDEF的外角. 求:∠1+∠2+∠3+∠4+∠5+∠6的值. 分析:关于外角问题我们马上就会联想到平角,这样我们就得到六边形的6个外角加上它相邻的内角的总和为6×180°.由于六边形的内角和为(6—2)×180°=720°. 这样就可求得∠1+∠2+∠3+∠4+∠5+∠6=360°. 解:∵六边形的任何一个外角加上它相邻的内角和为180°. ∴六边形的六个外角加上各自相邻内角的总和为6×180°. 由于六边形的内角和为(6—2)×180°=720° ∴它的外角和为6×180°一720°=360° 如果把六边形横成n边形.(n为不小于3的正整数) 同样也可以得到其外角和等于360°.即 多边形的外角和等于360°. 所以我们说多边形的外角和与它的边数无关. 对此,我们也可以象以下这种,理解为什么多边形的外角和等于360°. 如下图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°. 四、课堂练习 课本P89练习1、2、3题. P90第2、3题 五、课堂小结 引导学生总结本节课主要内容. 六、课后作业 课本P90第4、5、6题. 备选题: 一、判断题. 1.当多边形边数增加时,它的内角和也随着增加.( ) 2.当多边形边数增加时.它的外角和也随着增加.( ) 3.三角形的外角和与一多边形的外角和相等.( ) 4.从n边形一个顶点出发,可以引出(n一2)条对角线,得到(n一2)个三角形.( ) 5.四边形的四个内角至少有一个角不小于直角.( ) 二、填空题. 1.一个多边形的每一个外角都等于30°,则这个多边形为 边形. 2.一个多边形的每个内角都等于135°,则这个多边形为 边形. 3.内角和等于外角和的多边形是 边形. 4.内角和为1440°的多边形是 . 5.一个多边形的内角的度数从小到大排列时,恰好依次增加相同的度数,其中最小角为100°,最大的是140°,那么这个多边形是 边形. 6.若多边形内角和等于外角和的3倍,则这个多边形是 边形. 7.五边形的对角线有 条,它们内角和为 . 8.一个多边形的内角和为4320°,则它的边数为 . 9.多边形每个内角都相等,内角和为720°,则它的每一个外角为 . 10.四边形的∠A、∠B、∠C、∠D的外角之比为1:2:3:4,那么∠A:∠B:∠C:∠D= . 11.四边形的四个内角中,直角最多有 个,钝角最多有 个, 锐角最多有 个. 12.如果一个多边形的边数增加一条,那么这个多边形的内角和增加 ,外角和增加 . 三、选择题. 1.多边形的每个外角与它相邻内角的关系是( ) A.互为余角 B.互为邻补角 C.两个角相等 D.外角大于内角 2.若n边形每个内角都等于150°,那么这个n边形是( ) A.九边形 B.十边形 C.十一边形 D.十二边形 3.一个多边形的内角和为720°,那么这个多边形的对角线条数为( ) A.6条 B.7条 C.8条 D.9条 4.随着多边形的边数n的增加,它的外角和( ) A.增加 B.减小 C.不变 D.不定 5.若多边形的外角和等于内角和的号,它的边数是( ) A.3 B.4 C.5 D.7 6.一个多边形的内角和是1800°,那么这个多边形是( ) A.五边形 B.八边形 C.十边形 D.十二边形 7.一个多边形每个内角为108°,则这个多边形( ) A.四边形 B,五边形 C.六边形 D.七边形 8,一个多边形每个外角都是60°,这个多边形的外角和为( ) A.180° B.360° C.720° D.1080° 9.n边形的n个内角中锐角最多有( )个. A.1个 B.2个 C.3个 D.4个 10.多边形的内角和为它的外角和的4倍,这个多边形是( ) A.八边形 B.九边形 C.十边形 D,十一边形 四、解答题. 1.一个多边形少一个内角的度数和为2300°. (1)求它的边数; (2)求少的那个内角的度数. 2.一个八边形每一个顶点可以引几条对角线?它共有多少条对角线?n边形呢? 3.已知多边形的内角和为其外角和的5倍,求这个多边形的边数. 4.若一个多边形每个外角都等于它相邻的内角的,求这个多边形的边数. 5.多边形的一个内角的外角与其余内角的和为600°,求这个多边形的边数. 6.n边形的内角和与外角和互比为13:2,求n. 7.五边形ABCDE的各内角都相等,且AE=DE,AD∥CB吗? 8.将五边形砍去一个角,得到的是怎样的图形? 9.四边形ABCD中,∠A+∠B=210°,∠C=4∠D.求:∠C或∠D的度数. 10.在四边形ABCD中,AB=AC=AD,∠DAC=2∠BAC. 求证:∠DBC=2∠BDC.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服